Course Project: Stochastic Local Search for Variable Ordering in Graphical Models

For my project I implemented a novel Stochastic Local Search approach for finding a good variable elimination ordering. A good variable elimination ordering is defined as one with low induced width. I compared my implementation with Dr Kalev Kask’s min-fill heuristic, and Vibhav Gogate and Rina Dechter’s QuickBB algorithm. The latter is introduced in the following paper:

Pseudo-code for the SLS algorithm:

Induced-Width-SLS

Input: An undirected graph $G = \{X, E\}$, $X = \{x_1 \ldots x_n\}$, $E = \{e_1 \ldots e_m\}$

Outputs: An ordering d of X, the induced width along this ordering: $w^*(d)$

Initialize d to a min-fill ordering of X

do

if $\text{Rand} = \{0..1\} < 0.05$

 go to a random adjacent ordering

else

 go to an adjacent ordering d' that greedily improves w^*
 if no such ordering exists go to a random adjacent ordering

until elapsed time == time cutoff

return d', $w^*(d')$

Claim: The complexity of Induced-Width-SLS can be bounded by $O(n^2)$

Proof: at worst, Induced-Width-SLS will check all n adjacent orderings. The worst-case complexity of calculating the induced width of a given ordering d is $O(n)$. It follows that Induced-Width-SLS can be bounded by $O(n^2)$.

Definition: Two orderings d and d' are adjacent if and only if $d=<X_1\ldots X_n>$ and d' differs from d by at most two variables such that: $<\ldots X_i, X_{i+1}\ldots>$ in d appear as $<\ldots X_{i+1}, X_i\ldots>$ in d'

It follows from this definition that the size of the neighborhood = the number of adjacent orderings = $n - 1 = O(n)$
However it is the author’s suspicion that the average-case run-time is $O(nd)$ where d is the max of the degrees of the two nodes involved in the swap. Limited empirical analysis supports this claim (omitted)

Results *please see attached slides*

The following graphs were taken from Professor Bodlaender’s Treewidth Library
<http://people.cs.uu.nl/hansb/treewidthlib/index.php>. These are accepted treewidth benchmarks: Instance #1, #2

The following graphs are random partial k-trees: #3 is a partial 60-tree, #4 is a partial 100-tree, #5 is a partial 200-tree
each of these instances is guaranteed to have $w^* \leq k$
however due to my randomization scheme, the induced width of these graphs are likely less than k.

Conclusions

Induced-width-SLS is beat by a good implementation of min-fill. There was no instance where Induced-width-SLS provided a better ordering than min-fill. However the quality of the ordering is highly dependant on the initialized ordering. Initializing Induced-width-SLS with the best ordering found by min-fill may find orderings better than using either technique alone.

Future Work

In addition to experimenting with different design decisions, I am rewriting the code in C. My intention is to optimize the code to get each iteration to run as fast as possible.