Monte Carlo Tree Search and the Expected Outcome Heuristic

Andrew Gelfand
8/24/2011
Tree Search

- **Ex: Tile game**
 - State: location of tiles
 - Actions: move blank left, right, up, down

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```
Informed Search

- Evaluate each node using function $f(x)$
- **Strategy**: Expand node with smallest $f(x)$
- **Ex**: A* Search
 \[f(x) = g(x) + h(x) \]

 - $g(x)$: Cost to reach node x
 - $h(x)$: Estimate of cost to goal from node x

Sample Heuristics
- $h(x) = \#$ misplaced tiles
- $h(x) = $ Manhattan distance
Expected Outcome (EO) Heuristic

- Identifying 'good' evaluation function is hard

Expected Outcome (EO) [Abramson 90]

- "Elegant, crisply defined, easily estimable, and above all, domain independent"

\[
EO(x) = \sum_{k=1}^{K} g(x_k) \cdot p(x_k)
\]

- \(K \) # of leaves in subtree rooted at \(x \)
- \(g(x_k) \) cost of leaf node \(x_k \)
- \(p(x_k) \) probability of reaching node \(x_k \) given random actions i.e. under a 'Plinko' expansion strategy

Note: \(p(x_k) \neq 1/K \) (in general)
Monte Carlo Evaluation

- Estimate $p(x_i)$ by running simulations from x
 - Simulations must run quickly!
- Recursively build search tree
- Assuming simulations are iid

$$EO_n(x) = \frac{1}{n} \sum_{i=1}^{n} g(x^{(i)}) = EO_{\infty}(x) + R$$

- Evaluation of x after n simulations
- Cost of i^{th} simulation
- Evaluation of x after ∞ simulations
- $R \sim N\left(0, \sigma / \sqrt{n}\right)$ (Error Term)
Evaluating EO

- Is EO a good evaluation function?
 - Works well in some games (e.g. Othello)
 - “random” actions can be a bad assumption
 - Assume perfect play by opponent => cautious moves
 - Assume random play by opponent => ??

- How big must \(n \) be?
 - \(\sigma \) is unknown, so tough to say in general
 - \(n > 1000 \) in game of Go [Bouzy & Helmstetter 06]
 - Time consuming to get to a reasonable depth!
Extending MCE

- Combine search with MCE
 - Greater depth given fewer simulations
 - [Bouzy 06] Iteratively deepen and prune
 - [Persson 06] αβ search w/ lazy evaluations

- Learn the EO
 - EO is expectation, so fit $f(x)$ by minimizing SSE
 - Ex: Othello
 - m random initial board configurations
 - Sample to get \hat{EO} from each configuration
 - Fit function of form $f(x) = \sum_j w_j \phi_j(x)$
Monte Carlo Tree Search

- Don't prune; Gradually build search tree

1: Select
2: Expand
3: Simulate
4: Update/Backprop

For each node maintain:
- v_i - value of node x_i
- n_i - # times node x_i visited
MCTS – 1) Selection Step

- Apply *selection strategy* until unexplored node
- Balance exploration and exploitation

Strategies in literature:

- OMC (Objective Monte Carlo) [Chaslot et al. 06]
 - Selects action proportional to the prob. of the action being better than the current best action
- PBBM (Probability to be Better than Best Move) [Coulom 06]
 - Similar to OMC, but accounts for uncertainty
MCTS – 1) Selection Step

- UCT (Upper Confidence Bounds) [Kocsis & Szepesvari 06]
 - Based upon Upper Confidence Bounds (UCB) method for Multi-armed bandit problems
 - Select child k of node p according to:

$$k \in \arg \max_{i \in I} v_i + C \cdot \sqrt{\frac{\ln(n_p)}{n_i}}$$

- I set of nodes reachable from node x_p
- v_i current value of x_i
- n_i visit count of node x_i
- n_p visit count of node x_p
- C experimentally tuned coefficient
MCTS – 2) Expansion Step

- **Typical Strategy:**
 - Expand one node per simulated game
 - Add expanded node to the MCTS tree
 - Expanded node is typically 1st node encountered not in memory
MCTS – 3) Simulation Step

- Selects actions randomly from the expanded node until leaf node is reached
- **Choice:** Expand Randomly or use Heuristic?
 - **Tradeoff:**
 - If purely random, actions can be 'poor' causing unrealistic simulations (too much exploration)
 - If too deterministic, selected action for a given node may be same (too much exploitation)
 - Either way, must be fast!!!
MCTS – 4) Update/Backprop Step

- Propagates cost of simulation to those nodes traversed in MCTS tree

- Ex: Average of all simulations through node

\[v_i = \frac{1}{n_i} \sum_{k \in K} g(x^{(k)}) \]

- Set of simulations through node \(x_i \)
- Cost to reach a terminal node in simulation \(k \)