Approximate pK _a values (rounded to nearest 5)							
< 0	5	10	15	25	35	45	50
H I⊕ H∕H	O II RCOH	$\bigoplus_{\mathrm{NH}_4}$	ROH	RC≡CH	NH ₃	$R_2C = C$	CH ₄
H I⊕ R∕··≻H		⊕ RNH ₃	H ₂ O		RNH ₂	Н	RCH ₃
Н		$ \begin{array}{c} \oplus\\ R_2NH_2 \end{array} $			R ₂ NH		
$R \xrightarrow{O} R$		⊕ R₃NH					
⊕_H :O ∥ R OH							

Element effect periodic trend (when acidic hydrogen is bonded to a different element):

This means that H_2O will be a stronger acid than NH_3 which will be a stronger acid than CH_4 . Be careful when comparing acids and bases using this periodic trend to make sure that they have the same charge and hybridization!

Example 1: You can't compare NH_4^+ and H_2O and say that H_2O is a stronger acid. You *can* compare NH_4^+ and H_3O^+ and say that H_3O^+ is a stronger acid.

Example 2: You can't compare OH- and NH₃ and say that NH₃ is a stronger base because of the periodic trend. You *can* compare H₂O and NH₃ and say that NH₃ is a stronger base, and you *can* compare OH⁻ and NH₂⁻ and say that NH₂⁻ is a stronger base.

Example 3: You can't compare $CH_3C=CH$ and NH_3 and say that NH_3 is a stronger acid based on periodic trends. Hybridization changes things dramatically. This is why it is good to know a handful of pK_a 's rounded to the nearest 5 (the ones on the chart above). It makes it much easier to analyze examples like these where charge or hybridization is different.