Elimination Fundamentals

UCI Chem 51A
Dr. Link
Goals

☐ After this lesson you should be able to
 ☐ Identify and classify alkenes
 ☐ Rank relative stability of alkenes
 ☐ Describe the general method by which alkenes can be made from alkyl halides
Alkyl Halide Reactions

Substitution

\[R-X + \text{Nu}^- \rightarrow R-\text{Nu} + X^- \]

Elimination

\[
\begin{align*}
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{X} \\
\end{align*}
\]

\[+ \text{B} \rightarrow \begin{align*}
\text{=C} & \\
\end{align*} + \text{HB} + X^- \]
Alkenes 101

- Alkenes = C-C double bond
- No rotation!

Alkene Isomers
Alkene Stability

1. More substituted = more stable.

2. Sterics!
Why Are More Substituted Alkenes More Stable?

Electronegativity: sp^2 vs sp^3

- sp^2 more electronegative than sp^3
- sp^3 donate to sp^2

Hyperconjugation
Elimination Components & Factors

- Alkyl Halide (or other molecule with LG)
- Leaving Group (same as substitution)
- Base
- Solvent (same as substitution)
Making Alkenes: β-Hydrogens

\[\beta-H \text{ ABSOLUTELY REQUIRED!} \]

\[\text{note: } \alpha \text{ C can sometimes be } sp^2 \]
The Base

☐ Base is required for eliminations!
Making Alkenes: 2 Possible Pathways

All at Once

\[
\text{H} \quad \text{X} \quad \xrightarrow{B} \quad + \text{HB} + \text{X}^-
\]

One Step at A Time

\[
\text{H} \quad \text{X} \quad \xrightarrow{B} \quad \text{H} + \text{X}^- \xrightarrow{B} \quad + \text{HB}
\]
Wrapping Up

- Practice identifying types of alkenes
- Practice ranking relative alkene stabilities
- Practice identifying β-hydrogens