Kinetics & Organic Reactions

UCI Chem 51A
Dr. Link
Goals

- After this lesson you should be able to
 - Determine the general form of the rate law for a reaction based on given information
 - Predict the affect of changing concentration on the rate of reaction
 - Compare relative rates based on activation energies
 - Identify the rate-determining step in a reaction from a reaction coordinate diagram
 - Explain how a catalyst affects the rate of a reaction
Reaction Rates & Kinetic Molecular Theory

☐ Molecules must collide in the correct orientation and with the correct energy to react!

☐ Rates depend on:
 ☐ ________________
 ☐ ________________
Rate Laws: Effect of Concentration

Rates depend on concentration, but of what?

1st Order 2nd Order

Generally determined experimentally.
Transition States & Activation Energy

Note: Rates DO NOT depend on ΔG, ΔH, or K_{eq}!
Reactions with Multiple Steps

What determines the rate? Minimum energy needed to get reaction going depends on highest energy T_s^\dagger.

Energy

Reaction Coordinate

R TS^\dagger_1 TS^\dagger_2 E_a_1 Int E_a_2 P
Rate Law & Rate-Determining Steps

- What does the rate law tell us about the rate-determining step?
How Do Catalysts Work?

Catalysts provide alternative path with lower activation energy!

Energy

Reaction Coordinate

Rate 1 < Rate 2

TS⁻¹₁ > TS⁻¹₂

Rxn 2 catalyzed!

Different TS!
Wrapping Up

- Practice predicting the effect of concentration changes on rate of reaction
- Practice determining rate laws from changes in concentrations
- Practice comparing rates of reactions based on reaction coordinate diagrams
- Practice identifying the rate-determining step from a reaction coordinate diagram
- Practice identifying a catalyst or catalyzed reaction