5. If \(f(x) = |x| + 3x^2 \) for all real \(x \), then \(f'(-1) \) is

(A) 7 (B) -5 (C) 5 (D) 7 (E) nonexistent

6. For what value of \(b \) is the value of \(\int_{b}^{b+1} (x^2 + x) \, dx \) a minimum?

(A) 0 (B) -1 (C) -2 (D) -3 (E) -4

7. In how many of the eight standard octants of \(xyz \)-space does the graph of \(z = e^{x+y} \) appear?

(A) One (B) Two (C) Three (D) Four (E) Eight

8. Suppose that the function \(f \) is defined on an interval by the formula \(f(x) = \sqrt{\tan^2 x - 1} \). If \(f \) is continuous, which of the following intervals could be its domain?

(A) \(\left(\frac{3\pi}{4}, \pi \right) \n
(B) \(\left(\frac{\pi}{4}, \frac{\pi}{2} \right) \n
(C) \(\left(\frac{\pi}{4}, \frac{3\pi}{4} \right) \n
(D) \(\left(-\frac{\pi}{4}, 0 \right) \n
(E) \(\left(-\frac{3\pi}{4}, -\frac{\pi}{4} \right) \n
GO ON TO THE NEXT PAGE.
9. \[\int_{0}^{1} \frac{x}{2-x^2} \, dx = \]

(A) -\frac{1}{2} \quad (B) \frac{5}{3} \quad (C) \frac{\log 2 - e}{2} \quad (D) -\frac{\log 2}{2} \quad (E) \frac{\log 2}{2}

10. If \(f''(x) = f'(x) \) for all real \(x \), and if \(f(0) = 0 \) and \(f'(0) = -1 \), then \(f(x) = \)

(A) 1 - e^x \quad (B) e^x - 1 \quad (C) e^{-x} - 1 \quad (D) e^{-x} \quad (E) -e^x

11. If \(\phi(x, y, z) = x^2 + 2xy + xz^2 \), which of the following partial derivatives are identically zero?

I. \(\frac{\partial^2 \phi}{\partial y^2} \)

II. \(\frac{\partial^2 \phi}{\partial x \partial y} \)

III. \(\frac{\partial^2 \phi}{\partial z \partial y} \)

(A) III only \quad (B) I and II only \quad (C) I and III only \quad (D) II and III only \quad (E) I, II, and III

GO ON TO THE NEXT PAGE.
12. \[\lim_{{x \to 0}} \frac{\sin 2x}{(1 + x)\log(1 + x)} = \]

(A) \(-2\) \hspace{1cm} (B) \(-\frac{1}{2}\) \hspace{1cm} (C) 0 \hspace{1cm} (D) \frac{1}{2} \hspace{1cm} (E) 2

13. \[\lim_{{n \to \infty}} \int_1^n \frac{1}{x^n} \, dx = \]

(A) 0 \hspace{1cm} (B) 1 \hspace{1cm} (C) \(\pi\) \hspace{1cm} (D) \(\pi\) \hspace{1cm} (E) \(+\infty\)

14. At a 15 percent annual inflation rate, the value of the dollar would decrease by approximately one-half every 5 years. At this inflation rate, in approximately how many years would the dollar be worth \(\frac{1}{1,000,000}\) of its present value?

(A) 25 \hspace{1cm} (B) 50 \hspace{1cm} (C) 75 \hspace{1cm} (D) 100 \hspace{1cm} (E) 125

GO ON TO THE NEXT PAGE.
15. Let \(f(x) = \int_{1}^{x} \frac{1}{1 + t^2} \, dt \) for all real \(x \). An equation of the line tangent to the graph of \(f \) at the point \((2, f(2)) \) is

(A) \(y - 1 = \frac{1}{5}(x - 2) \) \hspace{1cm} (B) \(y - \arctan 2 = \frac{1}{5}(x - 2) \) \hspace{1cm} (C) \(y - 1 = (\arctan 2)(x - 2) \)

(D) \(y - \arctan 2 + \frac{\pi}{4} = \frac{1}{5}(x - 2) \) \hspace{1cm} (E) \(y - \frac{\pi}{2} = (\arctan 2)(x - 2) \)

16. Let \(f(x) = e^{g(x)}h(x) \) and \(h'(x) = -g'(x)h(x) \) for all real \(x \). Which of the following must be true?

(A) \(f \) is a constant function.
(B) \(f \) is a linear nonconstant function.
(C) \(g \) is a constant function.
(D) \(g \) is a linear nonconstant function.
(E) None of the above

17. \(1 - \sin^2\left(\arccos \frac{\pi}{12}\right) = \)

(A) \(\sqrt{\frac{1 - \cos \frac{\pi}{24}}{2}} \) \hspace{1cm} (B) \(\sqrt{\frac{1 - \cos \frac{\pi}{6}}{2}} \) \hspace{1cm} (C) \(\sqrt{\frac{1 + \cos \frac{\pi}{24}}{2}} \) \hspace{1cm} (D) \(\frac{\pi}{6} \) \hspace{1cm} (E) \(\frac{\pi^2}{144} \)

GO ON TO THE NEXT PAGE.
18. If \(f(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n} \) for all \(x \in (0, 1) \), then \(f''(x) = \)

(A) \(\sin x \)
(B) \(\cos x \)
(C) \(\frac{1}{1 + x^2} \)
(D) \(\frac{-2x}{(1 + x^2)^2} \)
(E) \(\frac{2x}{(1 - 2x)^2} \)

19. Which of the following is the general solution of the differential equation

\[
\frac{d^3y}{dt^3} - 3 \frac{d^2y}{dt^2} + 3 \frac{dy}{dt} - y = 0 \]

(A) \(c_1e^{t} + c_2te^{t} + c_3t^2e^{t} \)
(B) \(c_1e^{-t} + c_2te^{-t} + c_3t^2e^{-t} \)
(C) \(c_1e^{t} - c_2e^{-t} + c_3te^{t} \)
(D) \(c_1e^{t} + c_2e^{2t} + c_3e^{3t} \)
(E) \(c_1e^{2t} + c_2te^{-2t} \)

GO ON TO THE NEXT PAGE.
22. If \(b \) and \(c \) are elements in a group \(G \), and if \(b^4 = c^3 = e \), where \(e \) is the unit element of \(G \), then the inverse of \(b^2c^4e^2 \) must be

- (A) \(b^3c^2bc \)
- (B) \(b^4c^2b^2c \)
- (C) \(c^2b^4cb^2 \)
- (D) \(cb^2c^2b^4 \)
- (E) \(cbc^2b^3 \)

23. Let \(f \) be a real-valued function continuous on the closed interval \([0, 1]\) and differentiable on the open interval \((0, 1)\) with \(f(0) = 1 \) and \(f(1) = 0 \). Which of the following must be true?

I. There exists \(x \in (0, 1) \) such that \(f(x) = x \).
II. There exists \(x \in (0, 1) \) such that \(f'(x) = -1 \).
III. \(f(x) > 0 \) for all \(x \in [0, 1] \).

- (A) I only
- (B) II only
- (C) I and II only
- (D) II and III only
- (E) I, II, and III

24. If \(A \) and \(B \) are events in a probability space such that \(0 < P(A) = P(B) = P(A \cap B) < 1 \), which of the following CANNOT be true?

- (A) \(A \) and \(B \) are independent.
- (B) \(A \) is a proper subset of \(B \).
- (C) \(A \neq B \)
- (D) \(A \cap B = A \cup B \)
- (E) \(P(A)P(B) < P(A \cap B) \)

GO ON TO THE NEXT PAGE.
25. Let f be a real-valued function with domain $[0, 1]$. If there is some $K > 0$ such that $f(x) - f(y) \leq K|x - y|$ for all x and y in $[0, 1]$, which of the following must be true?

(A) f is discontinuous at each point of $(0, 1)$.
(B) f is not continuous on $(0, 1)$, but is discontinuous at only countably many points of $(0, 1)$.
(C) f is continuous on $(0, 1)$, but is differentiable at only countably many points of $(0, 1)$.
(D) f is continuous on $(0, 1)$, but may not be differentiable on $(0, 1)$.
(E) f is differentiable on $(0, 1)$.

26. Let $i = (1, 0, 0)$, $j = (0, 1, 0)$, and $k = (0, 0, 1)$. The vectors v_1 and v_2 are orthogonal if $v_1 = i + j - k$ and $v_2 =$

(A) $i + j - k$
(B) $i - j + k$
(C) $i + k$
(D) $j - k$
(E) $i + j$

27. If the curve in the yz-plane with equation $z = f(y)$ is rotated around the y-axis, an equation of the resulting surface of revolution is

(A) $x^2 + z^2 = (f(y))^2$
(B) $x^2 + z^2 = f(y)$
(C) $x^2 + z^2 = |f(y)|$
(D) $y^2 + z^2 = |f(y)|$
(E) $y^2 + z^2 = |f(x)|^2$

GO ON TO THE NEXT PAGE.
28. Let A and B be subspaces of a vector space V. Which of the following must be subspaces of V?

I. $A + B = \{a + b : a \in A \text{ and } b \in B\}$
II. $A \cup B$
III. $A \cap B$
IV. $\{x \in V : x \notin A\}$

(A) I and II only
(B) I and III only
(C) III and IV only
(D) I, II, and III only
(E) I, II, III, and IV

29. $\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{2k}\right) =$

(A) 0 (B) 1 (C) 2 (D) 4 (E) $+\infty$

30. If $f(x_1, \ldots, x_n) = \sum_{1 \leq i < j \leq n} x_i x_j$, then $\frac{\partial f}{\partial x_n} =$

(A) $n!$ (B) $\sum_{1 \leq i < j < n} x_i x_j$ (C) $\sum_{1 \leq i < j < n} (x_i + x_j)$ (D) $\sum_{j=1}^{n} x_j$ (E) $\sum_{j=1}^{n-1} x_j$

GO ON TO THE NEXT PAGE
31. If \(f(x) = \begin{cases} \sqrt{1 - x^2} & \text{for } 0 \leq x \leq 1 \\ x - 1 & \text{for } 1 < x \leq 2, \end{cases} \)

then \(\int_0^2 f(x) \, dx \) is

(A) \(\frac{\pi}{2} \)

(B) \(\frac{\sqrt{2}}{2} \)

(C) \(\frac{1}{2} + \frac{\pi}{4} \)

(D) \(\frac{1}{2} + \frac{\pi}{2} \)

(E) undefined

32. Let \(R \) denote the field of real numbers, \(Q \) the field of rational numbers, and \(Z \) the ring of integers. Which of the following subsets \(F_i \) of \(R \), \(1 \leq i \leq 4 \), are subfields of \(R \)?

\[
\begin{align*}
F_1 &= \{a/b: \ a, b \in Z \text{ and } b \text{ is odd}\} \\
F_2 &= \{a + b\sqrt{2}: \ a, b \in Z\} \\
F_3 &= \{a + b\sqrt{2}: \ a, b \in Q\} \\
F_4 &= \{a + b\sqrt{4/2}: \ a, b \in Q\}
\end{align*}
\]

(A) No \(F_i \) is a subfield of \(R \).

(B) \(F_3 \) only

(C) \(F_2 \) and \(F_3 \) only

(D) \(F_1, F_2, \) and \(F_3 \) only

(E) \(F_1, F_2, F_3, \) and \(F_4 \)

GO ON TO THE NEXT PAGE.
33. If \(n \) apples, no two of the same weight, are lined up at random on a table, what is the probability that they are lined up in order of increasing weight from left to right?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) (\frac{1}{2})</td>
<td>(B) (\frac{1}{n})</td>
<td>(C) (\frac{1}{n!})</td>
<td>(D) (\frac{1}{2^n})</td>
<td>(E) (\left(\frac{1}{n} \right)^n)</td>
</tr>
</tbody>
</table>

34. \(\frac{d}{dx} \int_0^{x^2} e^{-t^2} \, dt = \)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) (e^{-x^2})</td>
<td>(B) (2e^{-x^2})</td>
<td>(C) (2e^{-x^4})</td>
<td>(D) (x^2e^{-x^2})</td>
<td>(E) (2xe^{-x^4})</td>
</tr>
</tbody>
</table>

GO ON TO THE NEXT PAGE.
38. \[
\lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n} \right)^2 - \left(\frac{3i}{n} \right) \right] =
\]

(A) \(-\frac{1}{6}\) \hspace{1cm} (B) 0 \hspace{1cm} (C) 3 \hspace{1cm} (D) \frac{9}{2} \hspace{1cm} (E) \frac{31}{6}

39. For a real number \(x\), \(\log(1 + \sin 2\pi x)\) is not a real number if and only if \(x\) is

(A) an integer

(B) nonpositive

(C) equal to \(\frac{2n - 1}{2}\) for some integer \(n\)

(D) equal to \(\frac{4n - 1}{4}\) for some integer \(n\)

(E) any real number

40. If \(x\), \(y\), and \(z\) are selected independently and at random from the interval \([0, 1]\), then the probability that \(x \geq yz\) is

(A) \(\frac{3}{4}\) \hspace{1cm} (B) \(\frac{2}{3}\) \hspace{1cm} (C) \(\frac{1}{2}\) \hspace{1cm} (D) \(\frac{1}{3}\) \hspace{1cm} (E) \(\frac{1}{4}\)

GO ON TO THE NEXT PAGE.
43. Let \(n \) be an integer greater than 1. Which of the following conditions guarantee that the equation
\[
x^n = \sum_{i=0}^{n-1} a_i x^i
\]
has at least one root in the interval \((0, 1)\)?

I. \(a_0 > 0 \) and \(\sum_{i=0}^{n-1} a_i < 1 \)
II. \(a_0 > 0 \) and \(\sum_{i=0}^{n-1} a_i > 1 \)
III. \(a_0 < 0 \) and \(\sum_{i=0}^{n-1} a_i > 1 \)

(A) None
(B) I only
(C) II only
(D) III only
(E) I and III

44. If \(x \) is a real number and \(P \) is a polynomial function, then \(\lim_{h \to 0} \frac{P(x + 3h) + P(x - 3h) - 2P(x)}{h^2} = \)

(A) 0
(B) \(6P'(x) \)
(C) \(3P''(x) \)
(D) \(9P''(x) \)
(E) \(\infty \)

GO ON TO THE NEXT PAGE.