CHAPTER 2 REVIEW QUESTIONS

Complete the following review questions using the techniques outlined in this chapter. Then, see Chapter 8 for answers and explanations.

1. Consider the sequence \((x_n)\) whose terms are given by the formula

\[
x_n = \frac{\cos mx \sin^2 n}{\sqrt{n}}
\]

for each integer \(n \geq 1\). Given that this sequence converges, what is its limit?

(A) 0 (B) 1 (C) log 2 (D) \(\sqrt{2}\) (E) \(\sqrt{e}\)

2. Let \((x_n)\) be the sequence with \(x_1 = 2\) and \(x_n = \sqrt{5x_{n-1} + 6}\) for every integer \(n \geq 2\). Given that this sequence converges, what is its limit?

(A) 4 (B) 6 (C) 8 (D) 10 (E) 16

3. Let \([x]\) denote the greatest integer \(\leq x\). If \(n\) is a positive integer, then

\[
\lim_{x\to n^-} ([x] - [x]) - \lim_{x\to n^-} ([x] - [x]) = ?
\]

(A) -2 (B) 0 (C) 2 (D) 2n - 1 (E) 2n

4. Evaluate the following limit:

\[
\lim_{x\to 0} \frac{\arcsin x - x}{x^2}
\]

(A) 0 (B) \(\frac{1}{6}\) (C) \(\frac{1}{3}\) (D) \(\frac{1}{2}\) (E) 1

5. The curve whose equation is

\[2x^2 + 3x - 2xy - y = 6\]

has two asymptotes. Identify these lines.

(A) \(x = -1\) and \(y = -2\) (B) \(x = -2\) and \(y = 1\) (C) \(x = -\frac{1}{2}\) and \(y = x\)

(D) \(x = -\frac{1}{2}\) and \(y = x + 1\) (E) \(x = \frac{1}{2}\) and \(y = 1 - x\)
6. If the function

\[f(x) = \begin{cases} \frac{x^2 - 6x + 8}{x^3 - 2x^2 + 2x - 4} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} \]

is continuous everywhere, what is the value of \(k \)?

(A) 1 (B) \(\frac{1}{2} \) (C) \(\frac{1}{8} \) (D) \(-\frac{1}{3} \) (E) \(-1\)

7. Evaluate the following limit:

\[\lim_{x \to 0} \left[\frac{1}{x^2} \int_{0}^{x} \frac{t + t^2}{1 + \sin t} \, dt \right] \]

(A) \(\frac{1}{2\pi} \) (B) \(\frac{1}{\pi} \) (C) \(\frac{1}{2} \) (D) 1 (E) \(\frac{\pi}{2} \)

8. Determine the domain of the following function:

\[f(x) = \arcsin (\log \sqrt{x}) \]

(A) \([0, \frac{1}{e^2}]\) (B) \([\frac{1}{e^2}, 1]\) (C) \([e, e^2]\) (D) \([\frac{1}{e^2}, e^2]\) (E) \([1, e^2]\)

9. Evaluate the derivative of the following function at \(x = e \):

\[f(x) = \arcsin (\log \sqrt{x}) \]

(A) \(\frac{1}{e\sqrt{3}} \) (B) \(\frac{e}{\sqrt{2}} \) (C) \(\frac{\pi e}{2} \) (D) \(\sqrt{2e} \) (E) \(\frac{3e}{\sqrt{2}} \)

10. For what values of \(m \) and \(b \) will the following function have a derivative for every \(x \)?

\[f(x) = \begin{cases} x^2 + x - 3 & \text{if } x \leq 1 \\ mx + b & \text{if } x > 1 \end{cases} \]

(A) \(m = 3, b = -2 \) (B) \(m = -2, b = -3 \) (C) \(m = 1, b = -4 \)

(D) \(m = -2, b = 1 \) (E) \(m = 3, b = -4 \)
11. If \(f(x) \) is a function that's differentiable everywhere, what is the value of this limit?

\[
\lim_{h \to 0} \frac{f(x+3h^2) - f(x-h^2)}{2h^2}
\]

(A) \(4f'(x) \)
(B) \(2f'(x) \)
(C) \(f'(x) \)
(D) \(\frac{1}{2} f'(x) \)
(E) The limit does not exist.

12. What is the equation of the tangent line to the curve \(y = x^3 - 3x^2 + 4x \) at the curve’s inflection point?

(A) \(y = 2x - 3 \)
(B) \(y = x - 1 \)
(C) \(y = x + 1 \)
(D) \(y = 3x - 2 \)
(E) \(x + y = 1 \)

13. What is the slope of the tangent line to the curve \(xy(x+y) = x + y^4 \) at the point \((1, 1) \)?

(A) \(2 \)
(B) \(1 \)
(C) \(0 \)
(D) \(-1 \)
(E) \(-2 \)

14. If \(f(x) = 2|x-1| + (x-1)^2 \), what is the value of \(f'(0) \)?

(A) \(4 \)
(B) \(2 \)
(C) \(0 \)
(D) \(-2 \)
(E) \(-4 \)

15. If

\[
f(x) = \frac{e^x \arccos x}{\cos x}
\]

then the slope of the line tangent to the graph of \(f \) at its \(y \)-intercept is

(A) \(-\frac{\pi}{2} \)
(B) \(-1 \)
(C) \(\frac{\pi}{2} - 1 \)
(D) \(1 \)
(E) \(\frac{\pi}{2} + 1 \)

16. Let \(y = \frac{1}{\sqrt{x^3+1}} \). If \(x \) increases from 2 to 2.09, which of the following most closely approximates the change in \(y \)?

(A) 0.08
(B) 0.04
(C) -0.02
(D) -0.06
(E) -0.09

17. If \(f(1) = 1 \) and \(f'(1) = -1 \), then the value of \(\frac{d}{dx} \left[\frac{f(x^2)}{xf(x^3)} \right] \) at \(x = 1 \) is equal to

(A) 1
(B) 0
(C) -1
(D) -2
(E) -3
18. If \(n \) is a positive integer, what is the value of the \(n^{th} \) derivative of \(f(x) = \frac{1}{1 - 2x} \) at \(x = \frac{1}{2} \)?

(A) \(\frac{1}{2} (n^n) \)
(B) \(\frac{1}{2} (n!) \)
(C) \(\frac{1}{2} n \)
(D) \(n \)
(E) \(\frac{n^n}{n!} \)

19. Let \(f(x) \) be continuous on a bounded interval, \([a, b]\), where \(a \neq b \), such that \(f(a) = 1 \) and \(f(b) = 3 \), and \(f'(x) \) exists for every \(x \) in \((a, b)\). What does the Mean-Value theorem say about \(f \)?

(A) There exists a number \(c \) in the interval \((a, b)\) such that \(f'(c) = 0 \).
(B) There exists a number \(c \) in the interval \((a, b)\) such that \(f(c) = 0 \).
(C) There exists a number \(c \) in the interval \((a, b)\) such that \(f'(c) = 2 \).
(D) There exists a number \(c \) in the interval \((a, b)\) such that \(f'(c) = 2(b - a) \).
(E) There exists a number \(c \) in the interval \((a, b)\) such that \((b - a) f'(c) = 2 \).

20. What is the maximum area of a rectangle inscribed in a semicircle of radius \(a \)?

(A) \(\frac{\sqrt{2}}{2} a^2 \)
(B) \(\frac{\sqrt{3}}{2} a^2 \)
(C) \(a^2 \)
(D) \(\frac{\pi}{2\sqrt{2}} a^2 \)
(E) \(a^2 \sqrt{2} \)

21. The following function is defined for all positive \(x \):

\[
 f(x) = \int_{x}^{x+2\pi} \frac{\sin t}{t} dt
\]

At what value of \(x \) on the interval \((0, \frac{3\pi}{2})\) does this function attain a local maximum?

(A) \(\frac{\pi}{6} \)
(B) \(\frac{\pi}{3} \)
(C) \(\frac{\pi}{2} \)
(D) \(\pi \)
(E) \(\frac{2\pi}{3} \)

22. Let \(f(x) = x^k e^{-x} \), where \(k \) is a positive constant. For \(x > 0 \), what is the maximum value attained by \(f \)?

(A) \(\left(\frac{e}{k} \right)^k \)
(B) \(\frac{e}{\sqrt{k} e^k} \)
(C) \(\frac{(k \log k)^k}{k} \)
(D) \(\left(\frac{e}{\log k} \right)^k \)
(E) \(\left(\frac{k}{e} \right)^k \)

23. The radius of a circle is decreasing at a rate of 0.5 cm per second. At what rate, in \(\text{cm}^2/\text{sec} \), is the circle’s area decreasing when the radius is 4 cm?

(A) \(4\pi \)
(B) \(2\pi \)
(C) \(\pi \)
(D) \(\frac{1}{2\pi} \)
(E) \(\frac{1}{4\pi} \)

24. The function \(f(x) = \int_{x}^{x+\pi} t \log t \, dt \) has an absolute minimum at \(x = 0 \), and a local maximum at \(x = \)

(A) \(-\log 4 \)
(B) \(-\log 2 \)
(C) \(\log 2 \)
(D) \(1 \)
(E) \(\log 4 \)
25. Evaluate the following integral:
\[\int_{-1}^{0} x^2(x+1)^3 \, dx \]
\[\begin{align*}
(A) & \quad -\frac{7}{20} & (B) & \quad -\frac{1}{60} & (C) & \quad \frac{2}{15} & (D) & \quad \frac{1}{60} & (E) & \quad \frac{7}{20} \\
\end{align*} \]

26. If \([x]\) denotes the greatest integer \(\leq x\), then \(\int_{0}^{\frac{7}{2}} [x] \, dx =\)
\[\begin{align*}
(A) & \quad \frac{5}{2} & (B) & \quad \frac{7}{2} & (C) & \quad \frac{9}{2} & (D) & \quad \frac{17}{2} & (E) & \quad \frac{37}{2} \\
\end{align*} \]

27. If \[f(x) = \begin{cases}
-2(x+1) & \text{if } x \leq 0 \\
(k(1-x^2)) & \text{if } x > 0
\end{cases} \]
then the value of \(k\) for which \(\int_{-1}^{1} f(x) \, dx = 1\) is
\[\begin{align*}
(A) & \quad -1 & (B) & \quad 0 & (C) & \quad 1 & (D) & \quad 2 & (E) & \quad 3 \\
\end{align*} \]

28. Integrate \(\int \frac{x^2 \, dx}{\sqrt{1-x^4}} \).
\[\begin{align*}
(A) & \quad \frac{1}{2} \left(\arcsin x - \sqrt{1-x^2} \right) + c & (B) & \quad \frac{1}{2} \left(\arcsin x + x\sqrt{1-x^2} \right) + c & (C) & \quad \frac{1}{2} \left(x\arcsin x - \sqrt{1-x^2} \right) + c \\
(D) & \quad \frac{1}{2} \left(\arcsin x - x\sqrt{1-x^2} \right) + c & (E) & \quad \frac{1}{2} \left(x\arcsin x + \sqrt{1-x^2} \right) + c \\
\end{align*} \]

29. What is the area of the region in the first quadrant bounded by the curve \(y = x \arctan x\) and the line \(x = 1\)?
\[\begin{align*}
(A) & \quad \frac{\pi - 4}{4} & (B) & \quad \frac{\pi - 2}{4} & (C) & \quad \frac{\pi}{4} & (D) & \quad \frac{\pi + 2}{4} & (E) & \quad \frac{\pi + 4}{4} \\
\end{align*} \]

30. Simplify the following:
\[\exp \int_{3}^{5} \frac{dx}{x^2 - 3x + 2} \]
[Note: Recall that \(\exp x\) is a standard, alternate notation for \(e^x\).]
\[\begin{align*}
(A) & \quad \frac{3}{8} & (B) & \quad \frac{2}{3} & (C) & \quad \frac{4}{3} & (D) & \quad \frac{3}{2} & (E) & \quad \frac{5}{3} \\
\end{align*} \]
31. Calculate the area of the region in the first quadrant bounded by the graphs of \(y = 8x \), \(y = x^2 \), and \(y = 8 \).

(A) 12 (B) 8 (C) 6 (D) \(\frac{16}{3} \) (E) 4

32. Which of the following expressions gives the area of the region bounded by the two circles pictured below?

\[
\int_0^\frac{\pi}{6} \frac{1}{2} (\sqrt{3} \sin \theta)^2 \, d\theta + \int_0^{\frac{\pi}{3}} \frac{1}{2} (\sqrt{3} \sin \theta)^2 \, d\theta
\]

(A) \(\int_0^\frac{\pi}{6} \left[(\sqrt{3} \sin \theta)^2 - (3 \cos \theta)^2 \right] \, d\theta \)

(B) \(\int_0^\frac{\pi}{2} (3 \cos \theta)^2 \, d\theta + \int_0^{\frac{\pi}{6}} \frac{1}{2} (\sqrt{3} \sin \theta)^2 \, d\theta \)

(C) \(\int_0^\frac{\pi}{6} \frac{1}{2} (\sqrt{3} \sin \theta)^2 \, d\theta + \int_0^\frac{\pi}{3} \frac{1}{2} (3 \cos \theta)^2 \, d\theta \)

(D) \(\int_0^\frac{\pi}{6} (3 \cos \theta)^2 \, d\theta + \int_0^\frac{\pi}{3} \frac{1}{2} (\sqrt{3} \sin \theta)^2 \, d\theta \)

(E) \(\int_0^\frac{\pi}{6} \frac{1}{2} (\sqrt{3} \sin \theta)^2 \, d\theta + \int_0^{\frac{\pi}{3}} \frac{1}{2} (3 \cos \theta)^2 \, d\theta \)

33. Let \(a \) and \(b \) be positive numbers. The region in the second quadrant bounded by the graphs of \(y = ax^2 \) and \(y = -bx \) is revolved around the x-axis. Which of the following relationships between \(a \) and \(b \) would imply that the volume of this solid of revolution is a constant, independent of \(a \) and \(b \)?

(A) \(b^4 = 2a^5 \) (B) \(b^3 = 2a^5 \) (C) \(b^5 = 2a^3 \) (D) \(b^4 = 2a^2 \) (E) \(b^2 = 2a^3 \)

34. The region bounded by the graphs of \(y = x^2 \) and \(y = 6 - |x| \) is revolved around the y-axis. What is the volume of the generated solid?

(A) \(\frac{32 \pi}{3} \) (B) 9\pi (C) 8\pi (D) \(\frac{20 \pi}{3} \) (E) \(\frac{16 \pi}{3} \)
35. Calculate the length of the portion of the hypocycloid \(x^{2/3} + y^{2/3} = 1 \) in the first quadrant from the point \(\left(\frac{1}{8}, \frac{3\sqrt{3}}{8} \right) \), to the point (1, 0).

 (A) \(\frac{9}{8} \)
 (B) \(\frac{3\sqrt{2}}{4} \)
 (C) 1
 (D) \(\frac{5\sqrt{2}}{8} \)
 (E) \(\frac{\sqrt{3}}{2} \)

36. What positive value of \(a \) satisfies the following equation?

 \[
 \int_e^{e^a} \frac{dx}{x} \int_o^{e^y} \frac{dy}{y} = 1
 \]

 (A) \(\frac{1}{e} \)
 (B) \(\sqrt{e} \)
 (C) \(\sqrt{e} \)
 (D) \(e \)
 (E) \(e^2 \)

37. Evaluate the following limit:

 \[\lim_{x \to 0} (\cos x)^{e^x} \]

 (A) \(\frac{1}{2} \)
 (B) \(\frac{1}{\sqrt{e}} \)
 (C) \(\frac{\sqrt{e}}{2} \)
 (D) 1
 (E) \(\sqrt{e} \)

38. Let \(n \) be a number for which the improper integral

 \[
 \int_{e}^{\infty} \frac{dx}{x(\log x)^n}
 \]

 converges. Determine the value of the integral.

 (A) \(\frac{1}{n+1} \)
 (B) \(\frac{1}{n} \)
 (C) \(\frac{1}{n-1} \)
 (D) \(\frac{\log n}{n+1} \)
 (E) \(\frac{\log n}{n-1} \)

39. Find the positive value of \(a \) that satisfies the equation:

 \[
 \int_0^a \frac{dx}{\sqrt{a^2 - x^2}} = \int_0^a \frac{x dx}{\sqrt{a^2 - x^2}}
 \]

 (A) \(\frac{2\sqrt{2}}{\pi} \)
 (B) 1
 (C) \(\frac{\pi}{2\sqrt{2}} \)
 (D) \(\sqrt{2} \)
 (E) \(\frac{\pi}{2} \)
40. Which of the following improper integrals converge?
 I. \(\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 1)^2} \)
 II. \(\int_{1}^{\infty} xe^{-x} \, dx \)
 III. \(\int_{0}^{2} \frac{dx}{(2-x)^2} \)
 (A) I only (B) I and II only (C) II only
 (D) I and III only (E) II and III only

41. Which of the following infinite series converge?
 I. \(\sum_{n=1}^{\infty} \frac{\cos^4(\arctan n)}{n\sqrt{n}} \)
 II. \(\sum_{n=2}^{\infty} \frac{1}{n \log n} \)
 III. \(\sum_{n=3}^{\infty} \frac{(n+1)^3}{5(n+2)(n+3)(n+4)} \)
 (A) I only (B) I and II only (C) II only
 (D) I and III only (E) II and III only

42. Find the smallest value of \(b \) that makes the following statement true:
 If \(0 \leq a < b \), then the series \(\sum_{n=1}^{\infty} \frac{(n!)^2 a^n}{(2n)!} \) converges.
 (A) 1 (B) 2 log 2 (C) 2 (D) \(\sqrt{2} \) (E) 4

43. Evaluate the following limit:
 \[\lim_{n \to \infty} \sum_{k=1}^{n} \left[\frac{k}{n^2} - \frac{k^2}{n^3} \right] \]
 (A) \(\frac{2}{3} \) (B) \(\frac{1}{2} \) (C) \(\frac{1}{3} \) (D) \(\frac{1}{6} \) (E) \(\frac{1}{12} \)
44. Which of the following statements are true?

I. If \(a_n \geq 0 \) for every \(n \), then \(\sum_{n=1}^{\infty} a_n \) converges \(\Rightarrow \) \(\sum_{n=1}^{\infty} \sqrt{a_n} \) converges.

II. If \(a_n \geq 0 \) for every \(n \), then \(\sum_{n=1}^{\infty} na_n \) converges \(\Rightarrow \) \(\sum_{n=1}^{\infty} a_n \) converges.

III. If \(a_n \geq 0 \) and \(a_{n+1} \leq a_n \) for every \(n \), then \(\sum_{n=1}^{\infty} a_n^2 \) converges \(\Rightarrow \) \(\sum_{n=1}^{\infty} (-1)^n a_n \) converges.

(A) I and II only (B) I and III only (C) II only
(D) II and III only (E) III only

45. If \(-1 < x < 1\), then \(\sum_{n=1}^{\infty} nx^n = \)

(A) \(\frac{x^3}{(1-x)^2} \) (B) \(\frac{x^2}{(1-x^2)^2} \) (C) \(\frac{x}{(1+x^2)^2} \)

(D) \(\frac{x^3}{(1+x)^2} \) (E) \(\frac{x^2}{(1+x^2)^2} \)

46. The smallest positive integer \(x \) for which the power series \(\sum_{n=1}^{\infty} \frac{n!(2n)!}{(3n)!} x^n \) does not converge is

(A) 4 (B) 6 (C) 7 (D) 8 (E) 9

47. In the Taylor series expansion (in powers of \(x \)) of the function \(f(x) = e^{x^2-3} \), what is the coefficient of \(x^2 \)?

(A) \(-7\) (B) \(\frac{3}{2}\) (C) \(\frac{7}{6}\) (D) \(\frac{7}{6}\) (E) \(\frac{3}{2}\)

48. If \(k_i \) (\(i = 0, 1, 2, 3, 4 \)) are constants such that \(x^4 = k_0 + k_1 (x+1) + k_2 (x+1)^2 + k_3 (x+1)^3 + k_4 (x+1)^4 \) is an identity in \(x \), what is the value of \(k_3 \)?

(A) \(-4\) (B) \(-3\) (C) \(-2\) (D) 3 (E) 4