CHAPTER 4 REVIEW QUESTIONS

Complete the following review questions using the techniques outlined in this chapter. Then, see Chapter 8 for answers and explanations.

1. Let \(y = f(x) \) be the solution of the equation

\[
\frac{dy}{dx} = \frac{x^2}{x^2 + 1}
\]

such that \(y = 0 \) when \(x = 0 \). What is the value of \(f(1) \)?

(A) \(1 - \log 2 \) (B) \(1 + \log 2 \) (C) \(1 \) (D) \(\log 2 \) (E) \(\frac{1}{4} (4 - \pi) \)

2. A population of bacteria grows at a rate proportional to the number present. After two hours, the population has tripled. After two more hours elapse, the population will have increased by a factor of \(k \). What is the value of \(k \)?

(A) \(6 \) (B) \(8 \) (C) \(9 \) (D) \(27 \) (E) \(81 \)

3. Every curve in a certain family, \(y = f(x, c) \), has the following property: the area of the region in the first quadrant bounded above by the curve from \((0, 0) \) to \((x, y) \) and bounded below by the \(x \)-axis is \(\frac{1}{3} \) the area of the rectangle with opposite vertices at \((0, 0) \) and \((x, y) \). Find \(f(x, c) \).

(A) \(cx^3 \) (B) \(cx^3 + x \) (C) \(cx^3 - x \) (D) \(cx^2 \) (E) \(c\sqrt{x} \)

4. Which of the following depicts integral curves of the differential equation \(\left(\frac{dy}{dx} \right)^2 = \frac{x}{y} \left(2 \frac{dy}{dx} - \frac{x}{y} \right) \)?

(A)
(B)
(C)
(D)
(E)

5. If \(a \) is a positive constant, let \(y = f(x) \) be the solution of the equation

\[
y'''' - ay'' + a^2 y' - a^3 y = 0
\]

such that \(f(0) = 1 \), \(f'(0) = 0 \), and \(f''(0) = a^2 \). How many positive values of \(x \) satisfy the equation \(f(x) = 0 \)?

(A) \(0 \) (B) \(1 \) (C) \(2 \) (D) \(3 \) (E) more than 3

178 ◆ CRACKING THE GRE MATHEMATICS SUBJECT TEST
6. Let \(g: \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable and integrable function. The integral curve of the differential equation

\[
[y + g(x)] \, dx + [x - g(y)] \, dy = 0
\]

that passes through the point \((1, 1)\) must also pass through which of the following points?

(A) \((0, 0)\)
(B) \((2, \frac{1}{2})\)
(C) \((\frac{1}{2}, 2)\)
(D) \((-1, -1)\)
(E) \((0, 1)\)

7. Let \(y = f(x) \) be the solution of the equation

\[
\frac{dy}{dx} + \frac{y}{x} = \sin x
\]

such that \(f(\pi) = 1 \). What is the value of \(f(\frac{1}{2} \pi) \)?

(A) \(\frac{2}{\pi} - 1 \)
(B) \(\frac{2}{\pi} \)
(C) \(\frac{2}{\pi} + 1 \)
(D) \(\frac{\pi}{2} \)
(E) \(\frac{\pi}{2} + 1 \)

8. Let \(y = f(x) \) be the solution of the equation

\[
\frac{d^4 y}{dx^4} = \frac{d^2 y}{dx^2}
\]

such that \(f(0) = f'(0) = f''(0) = 0 \) and \(f'''(0) = -1 \). What is \(f(x) \)?

(A) \(x - \cosh x \)
(B) \(x - \sinh x \)
(C) \(x + \cosh x \)
(D) \(x + \sinh x \)
(E) \(\cosh x + \sinh x \)

9. What is the general solution of the differential equation

\[
2 \frac{d^3 x}{dt^3} + 3 \frac{d^2 x}{dt^2} + 3 \frac{dx}{dt} = 6?
\]

(A) \(x = 2t + c_1 e^t + c_2 e^{\frac{1}{2}t} + c_3 e^{3t} \)
(B) \(x = 2 + c_1 e^t + c_2 e^{\frac{1}{2}t} + c_3 e^{3t} \)
(C) \(x = t^2 + c_1 e^{\frac{1}{2}t} + c_2 e^{3t} \)
(D) \(x = 2t + c_1 + c_2 e^{\frac{1}{2}t} + c_3 e^{3t} \)
(E) \(x = 2 + c_1 + c_2 e^{\frac{1}{2}t} + c_3 e^{3t} \)

10. Given that the following differential equation has an integrating factor of the form \(\mu(x, y) = x^n y^r \), determine its general solution.

\[
(3xy^2 - 5y) \, dx + (2x^2y - 3x) \, dy = 0
\]

(A) \(x^y (\frac{1}{3} xy - 1) = c \)
(B) \(x^y (xy - 1) = c \)
(C) \(x^y (2xy - 1) = c \)

(D) \(x^y (\frac{1}{3} xy - 1) = c \)
(E) \(x^y (2xy - 1) = c \)
11. At every point \((x, y)\) on a curve in the \(xy\)-plane, the slope is equal to:

\[
\frac{1 - 2xy}{x^2 + 3y^2 + 1}
\]

What is the equation of this curve, given that it passes through the point \((1, 1)\)?

(A) \(\frac{1}{3} x^3 + 3xy^2 + x + y - xy^2 = \frac{13}{3}\)
(B) \(xy^2 + y^3 + x - y = 2\)
(C) \(\frac{1}{3} x^3 + 3xy^2 - x + y + xy^2 = \frac{13}{3}\)
(D) \(x^2y + y^3 - x + y = 2\)
(E) \(x^2y^2 + xy^3 + x - y = 1\)

12. Find the general solution of the differential equation:

\[
\frac{dy}{dx} = \frac{x + y}{x}
\]

(A) \(e^{y/x} = cx\)
(B) \(e^{y/x} = cy\)
(C) \(e^{x/y} = cx\)
(D) \(e^{x/y} = cy\)
(E) \(e^{-x/y} = cx\)

13. Consider the family \(F\) of circles in the \(xy\)-plane, \((x - c)^2 + y^2 = c^2\), that are tangent to the \(y\)-axis at the origin. Which of the following gives the differential equation that is satisfied by the family of curves orthogonal to \(F\)?

(A) \(y' = \frac{x}{x - y}\)
(B) \(y' = \frac{x}{y - x}\)
(C) \(y' = \frac{xy}{x - y}\)
(D) \(y' = \frac{2xy}{x^2 - y^2}\)
(E) \(y' = \frac{2xy}{y^2 - x^2}\)

14. Let \(g(x, y)\) be the function defined for all \(x\) and all nonzero \(y\) such that the differential equation

\[
(sin\ xy)\ dx + g(x, y)\ dy = 0
\]

is exact and \(g(0, y) = 0\) for all \(y \neq 0\). What is \(g(x, 1)\)?

(A) \(\sin x + \cos x - 1\)
(B) \(x \sin x + \cos x - 1\)
(C) \(x \sin x - \cos x + 1\)
(D) \(x \sin x + \cos x\)
(E) \(\sin x - x \cos x + 1\)

15. If \(w = f(x, y)\) is a solution of the partial differential equation

\[
2\frac{\partial w}{\partial x} - 3\frac{\partial w}{\partial y} = 0
\]

then \(w\) could equal

(A) \((2x - 3y)^6\)
(B) \(\sin[\log(3x - 2y)]\)
(C) \(e^{\arctan(3x^2 y)}\)

(D) \([\arccos(2y - 3x)]^2\)
(E) \(\sqrt{2x + 3y}\)