Topic 6: Stabilization of Carbocations by Vicinal Sigma Bonds

Reading: I. Fleming Molecular Orbitals and Organic Chemical Reactions, 2.2.1, 2.2.2
Drawing Norbornyl Ring Systems

■ Don’t draw norbornane like a coat hanger

■ Instead, **draw norbornane by starting with a chair conformation**

- bisect a chair
- draw perfect axial bonds
- join axial carbons
- erase the extra carbon
- darken bonds that are closer to viewer

■ Why base your depiction on a chair? So you can fuse other chairs using staggered bonds, visualize antiperiplanar relationships, and estimate atom-atom distances. Correct angles and distances are **essential** for predicting chemistry.

![Examples of norbornane structures]

- close? (not obviously close)
Solvolysis of 2-Norbornyl Derivatives

- Observations
 - Perfect bond alignment leads to stabilization of the 2-norbornyl cation and weakens the exo bond.
 - Not S_N2
 - Racemic product

- Not S_N2
- Racemic product

- 350x faster

- In complex mechanisms, I will allow you to connect 2-norbornyl structures with resonance arrows or reaction arrows.

[1,2] Alkyl and [1,2] Hydride Shifts

- Unstable carbocations (e.g., 2° alkyl) undergo rapid alkyl migrations, referred to as [1,2] shifts, as long as they are not going uphill in energy.

 ![Chemical Structure](image)

 $\Delta G^+ < 5 \text{ kcal/mol}$
 $t_{1/2} < 10 \text{ msec}$

- [1,2] Hydride shifts can also be fast too. Longer range hydride transfers are rare. 2-Norbornyl cations undergo a fast [1,3] hydride shift but that is atypical.

 ![Chemical Structure](image)

 $E_a = 10.8 \text{ kcal/mol}$
 $E_a = 5.9 \text{ kcal/mol}$

 Arrhenius Eq. $k = A e^{(-E_a/RT)}$

 E_a is similar to ΔH^+

- Be cautious about invoking longer range hydride transfers. They are rare.

 ![Chemical Structure](image)

 $NaOAc$ AcOH $45^\circ C, 18 \text{ h}$

 major product

- It will often be difficult to know whether 1,2-hydride shifts or proton transfers were involved.

 ![Chemical Structure](image)

 proton xfer

 $J. Am. Chem. Soc. 1963, 85, 3743$
Bonding in Cyclopropanes

- **Bonds:** Smaller angle = more p character = more nucleophilic.

 - C-H = acidic (lots of s character)
 - C-C = nucleophilic (lots of p character)

- Regions of maximum electron density are not on the C-C axis
- C-C = nucleophilic (lots of p character)
- C-H = acidic (lots of s character)

- **Conclusion:** Strained rings should be able to stabilize adjacent carbocations

 - Bent bonds in cyclopropane called "banana bonds"

 - Conformational requirements:
 - **GOOD** both strained C-C bonds donate into empty p orbital
 - **BAD** neither strained C-C bond donates into empty p orbital
Cyclopropylcarbinyl Cations

- Cyclopropyl groups lead to surprising stabilization

 \[
 \text{SN1 in AcOH} \quad \begin{array}{c}
 \text{OTs} \\
 \text{Ph} \text{OTs} \\
 \text{OTs}
 \end{array}
 \]

 \[k_{\text{rel}} \quad 1 \quad 1,400 \quad 120,000\]

- Cyclopropylcarbinyl cations are more stable than Ph\(_3\)C+

- Conformational requirement: strained bonds overlap with empty p or σ*

 acetolysis at 25 °C

- Cyclopropylcarbinyl cations lead to various products

- Resonance picture

 "homoallyl cation"
Beta Metal Carbocations

- Beta silyl carbocations are super stabilized by the adjacent nucleophilic C-Si bond

\[
\begin{align*}
\text{Me}_3\text{Si} & \quad \text{Me} \quad \text{R} \quad \text{C} \quad \text{R} \\
\text{H} & \quad \text{Me} \quad \text{R} \quad \text{C} \quad \text{R}
\end{align*}
\]

38 kcal/mol more stable!

- Longer bonds are more nucleophilic

Nucleophilicity: \(\sigma_{\text{C-C}} < \sigma_{\text{C-Si}} < \sigma_{\text{C-Ge}} < \sigma_{\text{C-Sn}} \)

(this isn’t due to electronegativity)

- All beta metals stabilize carbocations. They have long, nucleophilic metal-carbon bonds.

\[
\begin{align*}
\text{(OC)}_3\text{Fe} & \quad \text{Me} \quad \text{R} \quad \text{C} \quad \text{R} \\
\text{(OC)}_3\text{Fe}^+ & \quad \text{Me} \quad \text{R} \quad \text{C} \quad \text{R}
\end{align*}
\]

more correct, but useless for arrow-pushing