PRACTICE FINAL MULTIPLE CHOICE - ANSWER KEY

PEYAM RYAN TABRIZIAN

$1 C$ (calculate $F(x)$ by antidifferentiating, and then calculate $F(1)$)
$2 D$ (you can add any constant to F and still get an antiderivative)
$3 B$ (because f is decreasing on $[-6,-4]$ and increasing on $[2,4]$)
$4 C$ (the two functions are both positive)
$5 A$
$6 C$
$7 C$ (it equals to $\frac{1}{2} \ln |x+1|+C=\ln \left((x+1)^{\frac{1}{2}}\right)+C$
$8 A$ (use $u=e^{x}$, you should get $e^{e}-e$)
$9 D$
$10 B$
$11 A$
$12 A$ (use $\left.u^{\prime}=x, v=\ln (x)\right)$
$13 C$

14 A
$15 B$
$16 B$ (integral test)
$17 E$ (use the ratio test to get at least the interval $(-1,1)$. Moreover it diverges for $x=1$ because it becomes (one half) the harmonic series, and it converges for $x=-1$ by the alternating series test, hence we get $[-1,1)$)
$18 B$ (use the ratio test to get at least the interval $(-7,7)$. It diverges for $x=7$ because we get the series $\sum_{k=0}^{\infty} k$ (the terms don't converge to 0) and it diverges for $x=-7$ because we get the series $\sum_{k=0}^{\infty}(-1)^{k} k$ (the terms don't converge to 0 either))
$19 B$ (write the function as $\frac{1}{1+\frac{x}{2}}=\frac{1}{1-\left(\frac{-x}{2}\right)}$)
$20 C$ (start with the Maclaurin series of e^{x} and plug in $x=-1$)

