Due Monday, July 21 at the beginning of discussion.

1. Do Problem #3 in chapter 7, and Problems #1 and #5 in chapter 8.

2. Let $X \sim \text{Geometric}(p)$. Compute the p.m.f. of X^2 and $X + 2$.

3. Write down an explicit sample space Ω, the probabilities $P(\omega)$ for each outcome $\omega \in \Omega$, and the rule for the functions $X : \Omega \to \mathbb{R}$, $Y : \Omega \to \mathbb{R}$, such that $X \sim \text{Uniform}([1, 2, \ldots, N])$ and $Y \sim \text{Geometric}(p)$ are independent random variables.

 Be sure to check that X and Y actually satisfy the definition of independence.

 Show that $E(XY) = E(X)E(Y)$ by computing the sum $\sum_{x=1}^{N} \sum_{y=1}^{\infty} xyP(X = x, Y = y)$.

4. Let X and Y be independent $\text{Geometric}(p_1)$ and $\text{Geometric}(p_2)$ random variables. Compute the probability $P(X = Y)$. (You’ll have to sum a geometric series). In particular, if I roll a die until I see a 6, and you toss a coin until you obtain Heads, what is the chance that my number of rolls equals your number of tosses?

5. In the context of the previous problem, compute $P(X \geq Y)$. Hint: decompose the event $\{X \geq Y\}$ into a disjoint union of events $\{X = x, Y \geq X\}$.

6. In a population of n individuals, assume that each person’s birthday is equally likely to fall on any one of the 365 days in the year. Let X_i be the of people born on day i.

 (a) What is the distribution of X_i? Give an approximation to $P(X_i \geq 2)$.

 (b) If two or more people are born on the same day, then a large party is thrown on that day. Compute the expected number of large parties that occur during the year. Hint: Indicator trick.

 (c) How large does n need to be to ensure that the above expectation is at least 1?

7. Review Example 3.7 in the notes (the Matching problem). In the context of that problem, let X be the number of employees who end up with their own gift. Our goal is to find the approximate p.m.f. of X.

 (a) Show that the probability that employees $1, 2, \ldots, k$ end up with their own gift is $\frac{1}{(n)_k}$.

 (b) Show that the probability that only employees $1, 2, \ldots, k$ end up with their own gift is

 $$\frac{1}{(n)_k} \left[1 - \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^{n-k} \frac{1}{(n-k)!} \right].$$

 (Apply the result of Example 3.7 to the remaining $n - k$ employees).

 (c) Show that $P(X = k) \approx e^{-1} \frac{1}{k!}$ for n large. Thus X is approximately a Poisson(1) random variable.