
- 1. (18 points)
- a. Rank highest to lowest oxidation state

b. Provide pKa's for any 6 of the following compounds (if you do them all, we will count your best 6).

CH ₄	H ₃ C CH ₃ H ₃ C OH	H_3O^{\oplus}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HCI

c. Rank fastest to slowest reaction with LiAlH₄

Me OMe	Me CH ₃	Me H
Α	В	С
	>	>

d. Fill in the correct nucleophile and electrophile from the table to complete the retrosyntheses.

	Nucleophiles	Electrophiles
A	PhLi	E F ₃ C OCH ₃
В	Ph ₂ CuLi	F F3C H
С	NaBH ₄	G F ₃ C OH
D	LiAlH ₄	H F ₃ C NH ₂

Products

i. OH	\longrightarrow	
F ₃ C		+

ii. F ₃ C NH ₂	$\Longrightarrow \lceil$	+	
--------------------------------------	--------------------------	---	--

a.

What is the relationship between the products?

c. O
$$H_3C$$
 H_3C $H_$

d.
$$CH_3I$$
 H_3C H_3C

Provide an arrow-pushing mechanism (13 points)	3.	Provide a	n arrow-pushing	mechanism	(13	points)
--	----	-----------	-----------------	-----------	-----	--------	---

Initials:

a.

Mechanism:			

Is this reaction an oxidation, reduction, or neither?

Mechanism:			

5.	Propose syr	ntheses o	of the	targets	below ((16	points)	

Initials:

All carbons must come from the starting materials provided, you can use any reagent you wish. YOU CAN IGNORE STEREOCHEMISTRY.

Target A.

$$\begin{array}{c|c} \text{OH} & \text{CH}_3 \\ \text{H}_3\text{C} & \text{CH}_3 \end{array}$$

Target B.

4	Pronose	syntheses	of the	tarnets	helow	(12	nointe)

Initials:

All carbons must come from the starting materials provided, you can use any reagent you wish. YOU CAN IGNORE STEREOCHEMISTRY.

Target A.

Target B.