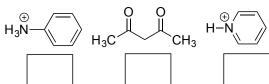
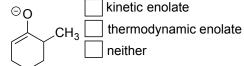

Midterm	2.	Chem	51C.	Jarvo.	Spring	19
wiiateiiii	۰,	Oncin	J.U,	oai vo,	Opining	

i.


1 (19 points)

a. Fill in the correct compounds from the table to complete the syntheses.

You can use the same compound more than once.


b. Provide pKa's for **any 2** of the following compounds (if you do them all, we will count your best 2).

c. Check the appropriate box or boxes.

0	\square sp ³
H ₃ C NMe ₂	sp ²
H ₃ C \ NMe ₂	sp

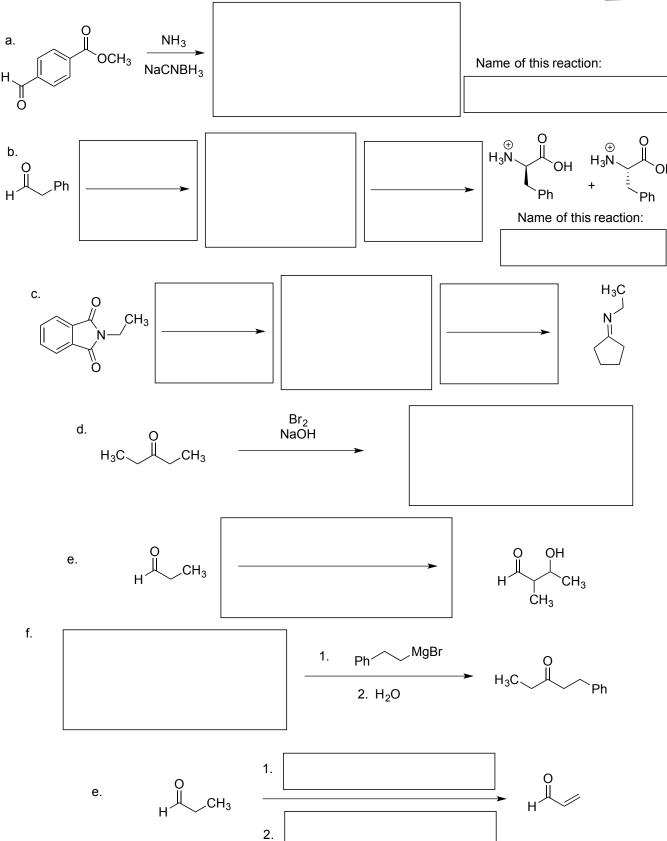
i. Hybridization of the nitrogen:

ii. Is this the:

	H
ii.	Name of reaction:
	1. LDA THF, -78 °C 2. CH ₃
	Name of reaction:
iii.	HOMe HOMe CH ₃ CH ₃
	Name of reaction:
iv.	+ NaOMe HOMe
	Name of reaction:
V.	LDA O H ₃ C H ₃ C
iv.	+ NaOMe O O O HOMe HOMe CH ₃
	Name of reaction:

NaOMe

HOMe


iii. A kinetic enolate is formed with:

NaOMe, HOMe, r.t.

LDA, THF, -78 °C

PPh₃, then n-BuLi

3. Fill in the boxes with the appropriate starting material, reagent or major product (33 points). Show stereochemistry where appropriate (you must DRAW the enantiomers/diastereomers)

a. Fill in the compounds from the table to complete the synthesis. You can use the same compound more than once.

ii.
$$\begin{array}{c|c} & CH_3 \\ \hline & CH_3 \\ \hline & OOO \\ \hline & H_3C \\ \end{array}$$

b. Rank the following compounds from most to least basic.

c. Provide an arrow-pushing mechanism

Ö	NaOCH ₃ HOCH ₃	O _O	what is the name of this mechanism?
H ₃ CO OH		H ₃ CO	

Mechanism:

4. (7 points) Propose a synthesis of the target below.	Initials:
+. (7 points) Fropose a synthesis of the target below.	

All carbons must come from the starting materials provided, you can use any reagent you wish. YOU CAN IGNORE STEREOCHEMISTRY.

Target A.

Initials:

6. (9 points) Propose a syntheses of the target below. **All carbons** must come from the starting materials provided, you can use any reagent you wish. **YOU CAN IGNORE STEREOCHEMISTRY.**

Starting Materials:

$$H_3C$$
 H
 H_3C
 CH_3
 CH_3
 CO_2

Target A.

5.	(8 p	oints)	Propose	a s	vntheses	of	the	target	below.

Initials:

All carbons must come from the starting materials provided, you can use any reagent you wish. YOU CAN IGNORE STEREOCHEMISTRY.

Starting Materials: H₃CO OCH₃ H₃C OCH₃ H₃C OCH₃ H₃C-I

Target A.