Alexander J. Sutherland University of California, Irvine
Department of Mathematics

Solving Polynomials After Klein: The Theory of Resolvent Degree

Thursday, May 16 ${ }^{\text {th }}, 2019$

Solving Polynomials - Classical Viewpoint

Classical Question

Given a polynomial

$$
P(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

find and understand the roots of $P(z)$ in terms of a_{1}, \ldots, a_{n}.
$1 \leq n \leq 4$ - Have formulas using radicals and,,$+- \times, \div$

Solving Polynomials - Classical Viewpoint

Classical Question

Given a polynomial

$$
P(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

find and understand the roots of $P(z)$ in terms of a_{1}, \ldots, a_{n}.
$1 \leq n \leq 4$ - Have formulas using radicals and,,$+- \times, \div$

Solving Polynomials - Classical Viewpoint

Classical Question

Given a polynomial

$$
P(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

find and understand the roots of $P(z)$ in terms of a_{1}, \ldots, a_{n}.

$n \geq 5$ and Galois Theory \Rightarrow no formula \ldots in radicals

 But polynomials still have roots!
Solving Polynomials - Classical Viewpoint

Classical Question

Given a polynomial

$$
P(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

find and understand the roots of $P(z)$ in terms of a_{1}, \ldots, a_{n}.

$n \geq 5$ and Galois Theory \Rightarrow no formula ... in radicals

But polynomials still have roots!

Solving Polynomials - Classical Viewpoint

Classical Question

Given a polynomial

$$
P(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

find and understand the roots of $P(z)$ in terms of a_{1}, \ldots, a_{n}.
$n \geq 5$ and Galois Theory \Rightarrow no formula ... in radicals But polynomials still have roots!

Table of Contents

Introduction

Algebraic Functions and Formulas

Resolvent Degree

Klein's Solution to the Quintic

The Sextic

Expanding the Context

Understand formulas via algebraic geometry and topology.

Start with the quadratic formula.

Expanding the Context

Understand formulas via algebraic geometry and topology.
Start with the quadratic formula.

Quadratic Formula - Classic

$$
\begin{aligned}
P(z) & =z^{2}+b z+c \\
z & =\frac{-b+\sqrt{b^{2}-4 c}}{2}
\end{aligned}
$$

Remark: View radicals in the classical sense, i.e. as a multi-valued function

$$
\sqrt[d]{w}:=\left\{z \mid z^{d}-w=0\right\} .
$$

Quadratic Formula - Classic

$$
\begin{aligned}
P(z) & =z^{2}+b z+c \\
z & =\frac{-b+\sqrt{b^{2}-4 c}}{2}
\end{aligned}
$$

Remark: View radicals in the classical sense, i.e. as a multi-valued function

$$
\sqrt[d]{w}:=\left\{z \mid z^{d}-w=0\right\}
$$

Quadratic Formula - Topology

$\mathbb{C}_{(b, c)}^{2}$ - space parametrizing the polynomials $z^{2}+b z+c$
Key component is the square root of the discriminant

$$
\mathbb{C}_{(b, c)}^{2} \xrightarrow[b^{2}-4 c]{ } \mathbb{C}^{\mathbb{C}^{1}}
$$

Quadratic Formula - Topology

Complete this to a pullback square

$$
\begin{array}{cc}
E_{1} & \longrightarrow \mathbb{C}^{1} \\
\downarrow & \\
\mathbb{C}_{(b, c)}^{2} & \underset{b^{2}-4 c}{ } \\
\mathbb{C}^{1}
\end{array}
$$

$$
E_{1}=\left\{(b, c, \delta) \in \mathbb{C}^{3} \mid \delta^{2}=b^{2}-4 c\right\}
$$

Quadratic Formula - Topology

From here, we can get the roots...

$$
\begin{gathered}
\mathbb{C}^{2} \stackrel{\left(\frac{-b-\delta}{2}, \frac{-b+\delta}{2}\right) \longleftarrow(b, c, \delta)}{\longleftrightarrow} E_{1} \longrightarrow \mathbb{C}^{1} \\
\mathbb{C}_{(b, c)}^{2} \xrightarrow[b^{2}-4 c]{\longrightarrow} \mathbb{C}^{1} \\
E_{1}=\left\{(b, c, \delta) \in \mathbb{C}^{2}\right. \\
\left.\mathbb{C}^{3} \mid \delta^{2}=b^{2}-4 c\right\}
\end{gathered}
$$

Quadratic Formula - Topology

... and then get back to the original polynomial.

$$
\begin{aligned}
& E_{1}=\left\{(b, c, \delta) \in \mathbb{C}^{3} \mid \delta^{2}=b^{2}-4 c\right\}
\end{aligned}
$$

Quadratic Formula - Topology

Focus on the map $E_{1} \rightarrow \mathbb{C}_{(b, c)}^{2}$ - Comes from pullback square

Quadratic Formula - Topology

Focus on the map $E_{1} \rightarrow \mathbb{C}_{(b, c)}^{2}$

- Comes from pullback square
- Top - 2-sheeted branched cover
- Alg Geom - generically finite, dominant, rational map

Quadratic Formula - Topology

Focus on the map $E_{1} \rightarrow \mathbb{C}_{(b, c)}^{2}$

- Comes from pullback square
- Top - 2-sheeted branched cover
- Alg Geom - generically finite, dominant, rational map

Quadratic Formula - Topology

Definition

A covering space (or simply, a cover) is a continuous surjection $p: Y \rightarrow X$ that can be locally trivialized around every point.

More explicitly, we can find a neighborhood U_{x} of every point x such that

$$
p^{-1}\left(U_{x}\right) \cong \bigsqcup_{i \in I} U_{x} .
$$

We say $p: Y \rightarrow X$ is n-sheeted if $|I|=n$ for all x.

Quadratic Formula - Topology

Definition

A covering space (or simply, a cover) is a continuous surjection $p: Y \rightarrow X$ that can be locally trivialized around every point.

More explicitly, we can find a neighborhood U_{x} of every point x such that

$$
p^{-1}\left(U_{x}\right) \cong \bigsqcup_{i \in I} U_{x}
$$

We say $p: Y \rightarrow X$ is n-sheeted if $|I|=n$ for all x.

Quadratic Formula - Topology

Figure 1: A 3-sheeted cover of S^{1}
Image from Allen Hatcher's Algebraic Topology, p. 56

Quadratic Formula - Topology

Definition

A branched covering space (branched cover) of complex varieties is a map $p: Y \rightarrow X$ such that

$$
\left.p\right|_{X \backslash \mathcal{B}}: p^{-1}(X \backslash \mathcal{B}) \rightarrow X \backslash \mathcal{B}
$$

is a cover (in classical topology) for some Zariski closed subvariety \mathcal{B} of X.

We refer to the minimal such \mathcal{B} as the branch locus of p.

Quadratic Formula - Topology

Figure 1: A 2-sheeted branched cover of S^{1}
Image from Christoper Dustin's blog,
"Representing Spacetime as a Branched Covering Space", (Link)

Quadratic Formula - Topology

$$
\begin{array}{cc}
E_{1} & \longrightarrow \mathbb{C}^{1} \\
\downarrow & \\
\mathbb{C}_{(b, c)}^{2} & \downarrow_{b^{2}-4 c} \\
\mathbb{C}^{1}
\end{array}
$$

Why is $E_{1} \rightarrow \mathbb{C}_{(b, c)}^{2}$ a branched cover?
When $b^{2}-4 c=0$, the fiber collapses to a point $\left(z^{2}+b z+c\right.$ has a unique root with multiplicity 2$)$

Quadratic Formula - Topology

Why is $E_{1} \rightarrow \mathbb{C}_{(b, c)}^{2}$ a branched cover?
When $b^{2}-4 c=0$, the fiber collapses to a point ($z^{2}+b z+c$ has a unique root with multiplicity 2)

Complex Varieties

Definition

A complex variety (variety over \mathbb{C}) is a reduced scheme of finite type over Spec (\mathbb{C}).

Varieties are reduced, but may not be irreducible.

Categories

We define two categories:

- IrrVars/C - objects are irreducible complex varieties, morphisms are dominant rational maps
- Fields/ \mathbb{C} - objects are field extensions of \mathbb{C} with finite transcendence degree, morphisms are field embeddings

Equivalences of Categories

Lemma

The functor induced by

$$
\begin{aligned}
\mathbb{C}: \text { IrrVars/ } \mathbb{C}^{\mathbf{0 p}} & \rightarrow \text { Fields/ } \mathbb{C} \\
X & \mapsto \mathbb{C}(X)
\end{aligned}
$$

is an equivalence of categories.

Equivalences of Categories

Corollary

The induced functor on arrow categories

$$
\begin{aligned}
\mathbf{A r}(\mathbb{C}): \mathbf{A r}\left(\text { IrrVars } / \mathbb{C}^{\mathbf{o p}}\right) & \rightarrow \mathbf{A r}(\text { Fields } / \mathbb{C}) \\
(Y \rightarrow X) & \mapsto(\mathbb{C}(X) \hookrightarrow \mathbb{C}(Y))
\end{aligned}
$$

is an equivalence of categories.

> Takeaway: Today - branched covers of complex varieties. Can also tell the same story in terms of field extensions

Equivalences of Categories

Corollary

The induced functor on arrow categories

$$
\begin{aligned}
\mathbf{A r}(\mathbb{C}): \mathbf{A r}\left(\text { IrrVars } / \mathbb{C}^{\mathbf{o p}}\right) & \rightarrow \mathbf{A r}(\text { Fields } / \mathbb{C}) \\
(Y \rightarrow X) & \mapsto(\mathbb{C}(X) \hookrightarrow \mathbb{C}(Y))
\end{aligned}
$$

is an equivalence of categories.

Takeaway: Today - branched covers of complex varieties. Can also tell the same story in terms of field extensions

Algebraic Functions

Definition

Let X be a complex variety. An algebraic function on X is an n-valued function

$$
\begin{aligned}
\phi: X & \rightarrow \mathbb{C} \\
x & \mapsto\left\{z \mid z^{n}+a_{1}(x) z^{n-1}+\cdots+a_{n}(x)=0\right\}
\end{aligned}
$$

where each a_{i} is a rational function on X

Algebraic Functions

Example

Let X be the complex variety \mathbb{C}^{n} and define a_{i} to be the $i^{\text {th }}$ coordinate function

$$
\begin{aligned}
a_{i}: X & \rightarrow \mathbb{C} \\
x & \mapsto x_{i}
\end{aligned}
$$

Define the algebraic function Φ_{n} as follows:

Algebraic Functions

Example

Let X be the complex variety \mathbb{C}^{n} and define a_{i} to be the $i^{\text {th }}$ coordinate function

$$
\begin{aligned}
a_{i}: X & \rightarrow \mathbb{C} \\
x & \mapsto x_{i}
\end{aligned}
$$

Define the algebraic function Φ_{n} as follows:

$$
\begin{aligned}
\Phi_{n}: X & \rightarrow \mathbb{C} \\
x & \mapsto\left\{z \mid z^{n}+a_{1}(x) z^{n-1}+\cdots+a_{n}(x)=0\right\}
\end{aligned}
$$

Restating our Classical Question

Re-state classical question in this language:

Classical Question (Re-stated)

Give a formula for Φ_{n}.

What is a formula for an algebraic function?
Generalization of the topological version of quadratic formula

Restating our Classical Question

Re-state classical question in this language:

Classical Question (Re-stated)

Give a formula for Φ_{n}.

What is a formula for an algebraic function?
Generalization of the topological version of quadratic formula

Restating our Classical Question

Re-state classical question in this language:

Classical Question (Re-stated)

Give a formula for Φ_{n}.

What is a formula for an algebraic function?
Generalization of the topological version of quadratic formula

Formula for a Branched Cover

Given a branched cover of complex varieties $Y \rightarrow X$, a formula in functions of d variables for $Y \rightarrow X$ of length r is a finite tower of branched covers of complex varieties

such that
 - $X_{0} \subseteq X$ is a dense Zariski open,
 - $X_{r} \rightarrow X$ factors through a branched cover $X_{r} \rightarrow Y$, each map $X_{i} \rightarrow X_{i-1}$ comes from a pulback square of complex varieties of dimension at most d.

Formula for a Branched Cover

Given a branched cover of complex varieties $Y \rightarrow X$, a formula in functions of d variables for $Y \rightarrow X$ of length r is a finite
tower of branched covers of complex varieties

such that
 $X_{0} \subseteq X$ is a dense Zariski open,
 $X_{r} \rightarrow X$ factors through a branched cover $X_{r} \rightarrow Y$, each map $X_{i} \rightarrow X_{i-1}$ comes from a pullback square of complex varieties of dimension at most d.

Formula for a Branched Cover

Given a branched cover of complex varieties $Y \rightarrow X$, a formula in functions of d variables for $Y \rightarrow X$ of length r is a finite tower of branched covers of complex varieties

$$
X_{r} \rightarrow X_{r-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \subseteq X
$$

such that
> $X_{0} \subseteq X$ is a dense Zariski open,
> $X_{r} \rightarrow X$ factors through a branchecl cover $X_{r} \rightarrow Y$ each map $X_{i} \rightarrow X_{i-1}$ comes from a pullback square of complex varieties of dimension at most d.

Formula for a Branched Cover

Given a branched cover of complex varieties $Y \rightarrow X$, a formula in functions of d variables for $Y \rightarrow X$ of length r is a finite tower of branched covers of complex varieties

$$
X_{r} \rightarrow X_{r-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \subseteq X
$$

such that

$$
\begin{aligned}
& X_{0} \subseteq X \text { is a dense Zariski open, } \\
& X_{r} \rightarrow X \text { factors through a branched cover } X_{r} \rightarrow Y, \\
& \text { each map } X_{i} \rightarrow X_{i-1} \text { comes from a pullback square of } \\
& \text { complex varieties of dimension at most } d .
\end{aligned}
$$

Formula for a Branched Cover

Given a branched cover of complex varieties $Y \rightarrow X$, a formula in functions of d variables for $Y \rightarrow X$ of length r is a finite tower of branched covers of complex varieties

$$
X_{r} \rightarrow X_{r-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \subseteq X
$$

such that

- $X_{0} \subseteq X$ is a dense Zariski open,
\square
$X_{r} \rightarrow X$ factors through a branched cover $X_{r} \rightarrow Y$
each map $X_{i} \rightarrow X_{i-1}$ comes from a pullback square of complex varieties of dimension at most d.

Formula for a Branched Cover

Given a branched cover of complex varieties $Y \rightarrow X$, a formula in functions of d variables for $Y \rightarrow X$ of length r is a finite tower of branched covers of complex varieties

$$
X_{r} \rightarrow X_{r-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \subseteq X
$$

such that

- $X_{0} \subseteq X$ is a dense Zariski open,
- $X_{r} \rightarrow X$ factors through a branched cover $X_{r} \rightarrow Y$,
each map $X_{i} \rightarrow X_{i-1}$ comes from a pullback square of complex varieties of dimension at most d.

Formula for a Branched Cover

Given a branched cover of complex varieties $Y \rightarrow X$, a formula in functions of d variables for $Y \rightarrow X$ of length r is a finite tower of branched covers of complex varieties

$$
X_{r} \rightarrow X_{r-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \subseteq X
$$

such that

- $X_{0} \subseteq X$ is a dense Zariski open,
- $X_{r} \rightarrow X$ factors through a branched cover $X_{r} \rightarrow Y$,
- each map $X_{i} \rightarrow X_{i-1}$ comes from a pullback square of complex varieties of dimension at most d.

Formula for an Algebraic Function

How does this help us define formulas for algebraic functions?
Given an algebraic function ϕ, we construct a canonical branched cover

Construction of a Branched Cover Associated to an Algebraic Function

Let X be a complex variety and ϕ an algebraic function on X given by

$$
x \mapsto\left\{z \mid z^{n}+a_{1}(x) z^{n-1}+\cdots+a_{n}(x)=0\right\} .
$$

 Construct

Construction of a Branched Cover Associated to an Algebraic Function

Let X be a complex variety and ϕ an algebraic function on X given by

$$
x \mapsto\left\{z \mid z^{n}+a_{1}(x) z^{n-1}+\cdots+a_{n}(x)=0\right\} .
$$

Explicitly write $a_{i}(x)=\frac{f_{i}(x)}{g_{i}(x)}$ and set $U=X \backslash Z\left(g_{1}, \ldots, g_{n}\right)$. Construct

Construction of a Branched Cover Associated to an Algebraic Function

Let X be a complex variety and ϕ an algebraic function on X given by

$$
x \mapsto\left\{z \mid z^{n}+a_{1}(x) z^{n-1}+\cdots+a_{n}(x)=0\right\} .
$$

Explicitly write $a_{i}(x)=\frac{f_{i}(x)}{g_{i}(x)}$ and set $U=X \backslash Z\left(g_{1}, \ldots, g_{n}\right)$. Construct

$$
E_{\phi}=\overline{\left\{(x, z) \in U \times \mathbb{P}^{1} \mid z^{n}+a_{1}(x) z^{n-1}+\cdots+a_{n}(x)=0\right\}} \subseteq X \times \mathbb{P}^{1} .
$$

Construction of a Branched Cover Associated to an Algebraic Function

Let X be a complex variety and ϕ an algebraic function on X given by

$$
x \mapsto\left\{z \mid z^{n}+a_{1}(x) z^{n-1}+\cdots+a_{n}(x)=0\right\} .
$$

Explicitly write $a_{i}(x)=\frac{f_{i}(x)}{g_{i}(x)}$ and set $U=X \backslash Z\left(g_{1}, \ldots, g_{n}\right)$. Construct

$$
E_{\phi}=\overline{\left\{(x, z) \in U \times \mathbb{P}^{1} \mid z^{n}+a_{1}(x) z^{n-1}+\cdots+a_{n}(x)=0\right\}} \subseteq X \times \mathbb{P}^{1}
$$

Get branched cover $E_{\phi} \rightarrow X$ given by $(x, z) \mapsto x$.

Formula for an Algebraic Function

Definition

Let ϕ be an algebraic function on a complex variety X.
A formula for ϕ is a formula for the branched cover

$$
E_{\phi} \rightarrow X
$$

> Want a formula for Φ_{n}. Moreover, want the formula to be as simple as possible. Need to make this precise.

Formula for an Algebraic Function

Definition

Let ϕ be an algebraic function on a complex variety X.
A formula for ϕ is a formula for the branched cover

$$
E_{\phi} \rightarrow X
$$

Want a formula for Φ_{n}. Moreover, want the formula to be as simple as possible. Need to make this precise.

Formula for an Algebraic Function

Definition

Let ϕ be an algebraic function on a complex variety X.
A formula for ϕ is a formula for the branched cover

$$
E_{\phi} \rightarrow X
$$

Want a formula for Φ_{n}. Moreover, want the formula to be as simple as possible. Need to make this precise.

Formula for an Algebraic Function

Definition

Let ϕ be an algebraic function on a complex variety X.
A formula for ϕ is a formula for the branched cover

$$
E_{\phi} \rightarrow X
$$

Want a formula for Φ_{n}. Moreover, want the formula to be as simple as possible. Need to make this precise.

Resolvent Degree and Essential Dimension

Definition

An n-sheeted cover $Y \rightarrow X$ is defined over a variety X_{0} if there is an n-sheeted cover $Y_{0} \rightarrow X_{0}$ such that

$$
Y \cong Y_{0} \times_{X_{0}} X
$$

for some map $X \rightarrow X_{0}$.
The essential dimension of $Y \rightarrow X$ is
$\operatorname{ed}(Y \rightarrow X)=\min \left\{\operatorname{dim}\left(X_{0}\right) \mid Y \rightarrow X\right.$ is defined over $\left.X_{0}\right\}$.

Resolvent Degree and Essential Dimension

Equivalently, the essential dimension of $Y \rightarrow X$ is $\operatorname{ed}(Y \rightarrow X)=\min \{d \mid \exists$ a formula of length 1 in d variables $\}$.

Resolvent Degree and Essential Dimension

Definition

The resolvent degree of $Y \rightarrow X$ is

$$
\mathrm{RD}(Y \rightarrow X)=\min \{d \mid \exists \text { a formula in } d \text { variables }\}
$$

Resolvent Degree and Essential Dimension

Given an algebraic function ϕ on X, the essential dimension / resolvent degree of ϕ is the essential dimension / resolvent degree of $E_{\phi} \rightarrow X$.

> ed (ϕ) - how simply we can write ϕ
> $\operatorname{RD}(\phi)$ - how simply we can write a formula for ϕ

Resolvent Degree and Essential Dimension

Given an algebraic function ϕ on X, the essential dimension / resolvent degree of ϕ is the essential dimension / resolvent degree of $E_{\phi} \rightarrow X$.

- ed (ϕ) - how simply we can write ϕ
- $\mathrm{RD}(\phi)$ - how simply we can write a formula for ϕ

Resolvent Degree and Essential Dimension

Given an algebraic function ϕ on X, the essential dimension / resolvent degree of ϕ is the essential dimension / resolvent degree of $E_{\phi} \rightarrow X$.

- ed (ϕ) - how simply we can write ϕ
- $\mathrm{RD}(\phi)$ - how simply we can write a formula for ϕ

$$
\operatorname{ed}(n):=\operatorname{ed}\left(\Phi_{n}\right)
$$

$$
\operatorname{RD}(n):=\operatorname{RD}\left(\Phi_{n}\right)
$$

Examples of RD and ed

What do we know?

n	1	2	3	4	5
$\operatorname{ed}(n)$					
$\operatorname{RD}(n)$					

Examples of RD and ed

What do we know?

n	1	2	3	4	5
$\operatorname{ed}(n)$	1				
$\operatorname{RD}(n)$	1				

Examples of RD and ed

What do we know?

n	1	2	3	4	5
$\operatorname{ed}(n)$	1	1			
$\operatorname{RD}(n)$	1	1			

Examples of RD and ed

What do we know?

n	1	2	3	4	5
$\operatorname{ed}(n)$	1	1	1	2	
$\operatorname{RD}(n)$	1	1	1	1	

Examples of RD and ed

What do we know?

n	1	2	3	4	5
$\operatorname{ed}(n)$	1	1	1	2	2
$\operatorname{RD}(n)$	1	1	1	1	1

"Kronecker's Theorem" - Felix Klein
Solving quintic in one step requires functions of two variables
Using longer towers, only need functions of one variable

Examples of RD and ed

What do we know?

n	1	2	3	4	5
$\operatorname{ed}(n)$	1	1	1	2	2
$\operatorname{RD}(n)$	1	1	1	1	1

"Kronecker's Theorem" - Felix Klein
Solving quintic in one step requires functions of two variables
Using longer towers, only need functions of one variable

Examples of RD and ed

What do we know?

n	1	2	3	4	5
$\operatorname{ed}(n)$	1	1	1	2	2
$\operatorname{RD}(n)$	1	1	1	1	1

"Kronecker's Theorem" - Felix Klein
Solving quintic in one step requires functions of two variables
Using longer towers, only need functions of one variable

Upper Bounds on RD

Essential dimension \neq resolvent degree

Focus on resolvent degree

Upper Bounds on RD

Essential dimension \neq resolvent degree

Focus on resolvent degree

Upper bounds on resolvent degree:

$$
\mathrm{RD}(5)=1 \text { (Bring, Klein) }
$$

Upper Bounds on RD

Essential dimension \neq resolvent degree

Focus on resolvent degree

Upper bounds on resolvent degree:

Upper Bounds on RD

Essential dimension \neq resolvent degree
Focus on resolvent degree

Upper bounds on resolvent degree:

| $\mathrm{RD}(5)=1$ (Bring, Klein) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| n 1 2 3 4 5 6
 7 7 8 9
 $\operatorname{RD}(n)$ 1 1 1 1 1 |

Upper Bounds on RD

Essential dimension \neq resolvent degree
Focus on resolvent degree

Upper bounds on resolvent degree:

$\mathrm{RD}(6) \leq 2$ (Hamilton, Klein)									
n	1	2	3	4	5	6	7	8	9
$\operatorname{RD}(n)$	1	1	1	1	1	≤ 2			

Upper Bounds on RD

Essential dimension \neq resolvent degree
Focus on resolvent degree

Upper bounds on resolvent degree:

$\mathrm{RD}(7) \leq 3$ (Hamilton, Klein)									
n 1 2 3 4 5 6 7									
$\mathrm{RD}(n)$	1	1	1	1	1	≤ 2	≤ 3		9

Upper Bounds on RD

Essential dimension \neq resolvent degree
Focus on resolvent degree

Upper bounds on resolvent degree:

$\mathrm{RD}(8) \leq 4$ (Hamilton)									
	1	2	3	4	5	6	7	8	9
$\mathrm{RD}(n)$	1	1	1	1	1	≤ 2	≤ 3	≤ 4	

Upper Bounds on RD

Essential dimension \neq resolvent degree
Focus on resolvent degree

Upper bounds on resolvent degree:

$\mathrm{RD}(9) \leq 4$ (Hilbert)									
n	1	2	3	4	5	6	7	8	9
$\mathrm{RD}(n)$	1	1	1	1	1	≤ 2	≤ 3	≤ 4	≤ 4

Hilbert's Conjectures

Translate Hilbert's conjectures into modern language:

- Hilbert's Sextic Conjecture: RD(6) $=2$
- Hilbert's 13th Problem:

- Hilbert's Octic Conjecture: $\mathrm{RD}(8)=4$

n	1	2	3	4	5	6	7	8	9
$\operatorname{RD}(n)$	1	1	1	1	1	≤ 2	≤ 3	≤ 4	≤ 4

Hilbert's Conjectures

Translate Hilbert's conjectures into modern language:

- Hilbert's Sextic Conjecture: RD(6) $=2$

n	1	2	3	4	5	6	7	8	9
$\operatorname{RD}(n)$	1	1	1	1	1	≤ 2	≤ 3	≤ 4	≤ 4

Hilbert's Conjectures

Translate Hilbert's conjectures into modern language:

- Hilbert's Sextic Conjecture: RD(6) $=2$
- Hilbert's 13th Problem: $\quad \mathrm{RD}(7)=3$
- Hilbert's Octic Conjecture: $\mathrm{RD}(8)=4$

n	1	2	3	4	5	6	7	8	9
$\operatorname{RD}(n)$	1	1	1	1	1	≤ 2	≤ 3	≤ 4	≤ 4

Hilbert's Conjectures

Translate Hilbert's conjectures into modern language:

- Hilbert's Sextic Conjecture: RD(6) $=2$
- Hilbert's 13th Problem: $\quad \mathrm{RD}(7)=3$
- Hilbert's Octic Conjecture: $\mathrm{RD}(8)=4$

n	1	2	3	4	5	6	7	8	9
$\operatorname{RD}(n)$	1	1	1	1	1	≤ 2	≤ 3	≤ 4	≤ 4

Bounds on Resolvent Degree

Hamilton (1836), Sylvester (1887), Brauer (1975), and Wolfson Upper bounds on RD (n)

Bounds not expected to be sharp (for large n)
No (non-trivial) lower bounds on $\mathrm{RD}(n)$

In particular, unknown if $\mathrm{RD}(n) \equiv 1$

However, expect $\mathrm{RD}(n) \rightarrow \infty$ as $n \rightarrow \infty$

Bounds on Resolvent Degree

Hamilton (1836), Sylvester (1887), Brauer (1975), and Wolfson Upper bounds on $\mathrm{RD}(n)$

Bounds not expected to be sharp (for large n)
No (non-trivial) lower bounds on $\mathrm{RD}(n)$
In particular, unknown if $\mathrm{RD}(n) \equiv 1$
However, expect $\mathrm{RD}(n) \rightarrow \infty$ as $n \rightarrow \infty$

Bounds on Resolvent Degree

Hamilton (1836), Sylvester (1887), Brauer (1975), and Wolfson Upper bounds on $\mathrm{RD}(n)$

Bounds not expected to be sharp (for large n)
No (non-trivial) lower bounds on $\mathrm{RD}(n)$
In particular, unknown if $\mathrm{RD}(n) \equiv 1$
However, expect $\mathrm{RD}(n) \rightarrow \infty$ as $n \rightarrow \infty$

Bounds on Resolvent Degree

Hamilton (1836), Sylvester (1887), Brauer (1975), and Wolfson Upper bounds on $\mathrm{RD}(n)$

Bounds not expected to be sharp (for large n)
No (non-trivial) lower bounds on $\mathrm{RD}(n)$
In particular, unknown if $\mathrm{RD}(n) \equiv 1$

However, expect $\mathrm{RD}(n) \rightarrow \infty$ as $n \rightarrow \infty$

Bounds on Resolvent Degree

Hamilton (1836), Sylvester (1887), Brauer (1975), and Wolfson Upper bounds on $\mathrm{RD}(n)$

Bounds not expected to be sharp (for large n)
No (non-trivial) lower bounds on $\mathrm{RD}(n)$
In particular, unknown if $\mathrm{RD}(n) \equiv 1$
However, expect RD $(n) \rightarrow \infty$ as $n \rightarrow \infty$

Quote by Dixmier

Conclusion to Dixmier's summary on Hilbert's 13th problem ${ }^{1}$
"Let's end on a dramatic note, which proves our incredible ignorance. Although this seems unlikely, it is not impossible that $R D(n)=1$ for all n !
... Any reduction of $R D(n)$ would be serious progress. In particular, it is time to know whether $\operatorname{RD}(6)=1$ or $R D(6)=2 .{ }^{\prime \prime}$

[^0]
Remaining Goals for the Talk

Formulas for Sextic - Hamilton, detailed sketch by Klein

Research Goal - Understand precise geometric relationship between solutions of Hamilton and Klein

Hopefully gives insight to resolvent degree, as well.

Start with Klein's solution of the quintic.

Remaining Goals for the Talk

Formulas for Sextic - Hamilton, detailed sketch by Klein

Research Goal - Understand precise geometric relationship between solutions of Hamilton and Klein

Hopefully gives insight to resolvent degree, as well.
Start with Klein's solution of the quintic.

Remaining Goals for the Talk

Formulas for Sextic - Hamilton, detailed sketch by Klein

Research Goal - Understand precise geometric relationship between solutions of Hamilton and Klein

Hopefully gives insight to resolvent degree, as well.
Start with Klein's solution of the quintic.

Remaining Goals for the Talk

Formulas for Sextic - Hamilton, detailed sketch by Klein

Research Goal - Understand precise geometric relationship between solutions of Hamilton and Klein

Hopefully gives insight to resolvent degree, as well.
Start with Klein's solution of the quintic.

Formula for the Quintic

Theorem (Klein)

is a formula for the quintic (in one variable functions).

Components of The Tower

- $E_{1} \rightarrow \mathbb{C}^{5}$ - reduction of quintic to the normal form
$z^{5}+a z^{2}+b z+c$
$E_{\sqrt{\Delta_{5}}} \rightarrow E_{1}$ - adjoin square root of discriminant
- Icosahedral cover

f, H - polynomials invariant under action of A_{5} (correspond to vertices, faces)

Components of The Tower

- $E_{1} \rightarrow \mathbb{C}^{5}$ - reduction of quintic to the normal form $z^{5}+a z^{2}+b z+c$
- $E_{\sqrt{\triangle_{5}}} \rightarrow E_{1}$ - adjoin square root of discriminant
- Icosahedral cover

$$
\begin{aligned}
& \mathcal{I}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \cong \mathbb{P}^{1} / A_{5} \\
& {\left[z_{1}: z_{2}\right] } \mapsto\left[H\left(z_{1}, z_{2}\right)^{3}: 1728 f\left(z_{1}, z_{2}\right)^{5}\right] \\
& f, H \text { - polynomials invariant under action of } A_{5} \\
& \text { (correspond to vertices, faces) }
\end{aligned}
$$

Components of The Tower

- $E_{1} \rightarrow \mathbb{C}^{5}$ - reduction of quintic to the normal form $z^{5}+a z^{2}+b z+c$
- $E_{\sqrt{\triangle_{5}}} \rightarrow E_{1}$ - adjoin square root of discriminant
- Icosahedral cover

$$
\begin{aligned}
& \mathcal{I}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \cong \mathbb{P}^{1} / A_{5} \\
& {\left[z_{1}: z_{2}\right] } \mapsto\left[H\left(z_{1}, z_{2}\right)^{3}: 1728 f\left(z_{1}, z_{2}\right)^{5}\right] \\
& \text { f. } H \text { - polynomials invariant under action of } A_{5}
\end{aligned}
$$

Components of The Tower

- $E_{1} \rightarrow \mathbb{C}^{5}$ - reduction of quintic to the normal form $z^{5}+a z^{2}+b z+c$
- $E_{\sqrt{\triangle_{5}}} \rightarrow E_{1}$ - adjoin square root of discriminant
- Icosahedral cover

$$
\begin{aligned}
\mathcal{I}: \mathbb{P}^{1} & \rightarrow \mathbb{P}^{1} \cong \mathbb{P}^{1} / A_{5} \\
{\left[z_{1}: z_{2}\right] } & \mapsto\left[H\left(z_{1}, z_{2}\right)^{3}: 1728 f\left(z_{1}, z_{2}\right)^{5}\right]
\end{aligned}
$$

f, H - polynomials invariant under action of A_{5} (correspond to vertices, faces)

The Analytic Part

Klein - complete algebraic solution of the quintic

Further, use analytic functions to solve polynomials.

 Example:

The Analytic Part

Klein - complete algebraic solution of the quintic
Further, use analytic functions to solve polynomials.

Example:

The Analytic Part

Klein - complete algebraic solution of the quintic
Further, use analytic functions to solve polynomials.
Example:

$$
z^{n}=w \quad \Leftrightarrow \quad z=e^{\frac{1}{n} \log (w)}
$$

The Analytic Part

\mathbb{P}^{1} uniformized by upper half-plane \mathcal{H}

For quintic, use elliptic modular functions.

The Analytic Part

\mathbb{P}^{1} uniformized by upper half-plane \mathcal{H}

For quintic, use elliptic modular functions.

The Bring Curve

Bring (1786) also gave a solution to the quintic

Bring reduced generic quintic to $z^{5}+a z+b$
If z_{1}, \ldots, z_{5} are roots of a polynomial of the form $z^{5}+a z+b$,
then

Equations define a subvariety $C_{B} \subseteq \mathbb{P}^{4}$ - Bring curve

The Bring Curve

Bring (1786) also gave a solution to the quintic

Bring reduced generic quintic to $z^{5}+a z+b$
If z_{1}, \ldots, z_{5} are roots of a polynomial of the form $z^{5}+a z+b$, then

Equations define a subvariety $C_{B} \subseteq \mathbb{P}^{4}$ - Bring curve

The Bring Curve

Bring (1786) also gave a solution to the quintic
Bring reduced generic quintic to $z^{5}+a z+b$
If z_{1}, \ldots, z_{5} are roots of a polynomial of the form $z^{5}+a z+b$, then

$$
\sum_{k=1}^{5} z_{k}=\sum_{k=1}^{5} z_{k}^{2}=\sum_{k=1}^{5} z_{k}^{3}=0
$$

The Bring Curve

Bring (1786) also gave a solution to the quintic
Bring reduced generic quintic to $z^{5}+a z+b$
If z_{1}, \ldots, z_{5} are roots of a polynomial of the form $z^{5}+a z+b$, then

$$
\sum_{k=1}^{5} z_{k}=\sum_{k=1}^{5} z_{k}^{2}=\sum_{k=1}^{5} z_{k}^{3}=0
$$

Equations define a subvariety $C_{B} \subseteq \mathbb{P}^{4}$ - Bring curve

The Bring Curve

C_{B} also uniformized by \mathcal{H}.

(Green) Natural 3-sheeted branched covering $C_{B} \rightarrow \mathbb{P}^{1}$

The Bring Curve

C_{B} also uniformized by \mathcal{H}.

(Green) Natural 3-sheeted branched covering $C_{B} \rightarrow \mathbb{P}^{1}$

The Bring Curve

The Bring Curve

C_{B} also uniformized by \mathcal{H}.
(Green) Natural 3-sheeted branched covering $C_{B} \rightarrow \mathbb{P}^{1}$
Remark: Analogues of Bring curve for degrees 2,3,4 are rational.
C_{B} is not a rational curve

Total Solution of the Quintic

Total solution of the quintic (both the algebraic and analytic parts) comes down to understanding:

Total Solution of the Quintic

Total solution of the quintic (both the algebraic and analytic parts) comes down to understanding:

$$
\mathbb{P}^{1} \curvearrowleft A_{5}
$$

Total Solution of the Quintic

Total solution of the quintic (both the algebraic and analytic parts) comes down to understanding:

$$
A_{5} \curvearrowright C_{B} \quad \mathbb{P}^{1} \curvearrowleft A_{5}
$$

Total Solution of the Quintic

Total solution of the quintic (both the algebraic and analytic parts) comes down to understanding:

$$
A_{5} \curvearrowright C_{B} \xrightarrow{3: 1} \mathbb{P}^{1} \curvearrowleft A_{5}
$$

Total Solution of the Quintic

Total solution of the quintic (both the algebraic and analytic parts) comes down to understanding:

$$
\mathcal{H} \curvearrowleft S L_{2}(\mathbb{Z}, 5)
$$

$$
A_{5} \curvearrowright C_{B} \xrightarrow{3: 1} \mathbb{P}^{1} \curvearrowleft A_{5}
$$

Total Solution of the Quintic

Total solution of the quintic (both the algebraic and analytic parts) comes down to understanding:

Total Solution of the Quintic

Total solution of the quintic (both the algebraic and analytic parts) comes down to understanding:

Solving the Sextic

Solutions of Bring/Klein for quintic generalize to solutions of Hamilton/Klein for sextic.

Analogous first steps:

Reduction to normal forms Adjoin square root of the discriminant

Solving the Sextic

Solutions of Bring/Klein for quintic generalize to solutions of Hamilton/Klein for sextic.

Analogous first steps:

Reduction to normal forms
 Adjoin square root of the discriminant

Solving the Sextic

Solutions of Bring/Klein for quintic generalize to solutions of Hamilton/Klein for sextic.

Analogous first steps:

- Reduction to normal forms

Adjoin square root of the discriminant

Solving the Sextic

Solutions of Bring/Klein for quintic generalize to solutions of Hamilton/Klein for sextic.

Analogous first steps:

- Reduction to normal forms
- Adjoin square root of the discriminant

Algebraically Solving the Sextic

Last stage of Klein's solution for quintic comes from icosahedron, $A_{5} \curvearrowright \mathbb{P}^{1}$
A_{6} does not act on \mathbb{P}^{1}, but does act on \mathbb{P}^{2}

Want to understand $A_{6} \curvearrowright \mathbb{P}^{2}$ by realizing A_{6} as symmetry group of a regular geometric object and identifying geometric object with \mathbb{P}^{2}

Algebraically Solving the Sextic

Last stage of Klein's solution for quintic comes from icosahedron, $A_{5} \curvearrowright \mathbb{P}^{1}$
A_{6} does not act on \mathbb{P}^{1}, but does act on \mathbb{P}^{2}

Want to understand $A_{6} \curvearrowright \mathbb{P}^{2}$ by realizing A_{6} as symmetry group of a regular geometric object and identifying geometric object with \mathbb{P}^{2}

Algebraically Solving the Sextic

Last stage of Klein's solution for quintic comes from icosahedron, $A_{5} \curvearrowright \mathbb{P}^{1}$
A_{6} does not act on \mathbb{P}^{1}, but does act on \mathbb{P}^{2}
Want to understand $A_{6} \curvearrowright \mathbb{P}^{2}$ by realizing A_{6} as symmetry group of a regular geometric object and identifying geometric object with \mathbb{P}^{2}

Algebraically Solving the Sextic

Understanding $A_{6} \curvearrowright \mathbb{P}^{2}$ gives

- an explicit isomorphism $\mathbb{P}^{2} / A_{6} \cong \mathbb{P}^{2}$
- a minimal generating set of A_{6}-invariant polynomials

Use these to construct $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ - analogue of Klein's icosahedral cover

Formula for the sextic follows analogously

Algebraically Solving the Sextic

Understanding $A_{6} \curvearrowright \mathbb{P}^{2}$ gives

- an explicit isomorphism $\mathbb{P}^{2} / A_{6} \cong \mathbb{P}^{2}$
- a minimal generating set of A_{6}-invariant polynomials

Use these to construct $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ - analogue of Klein's icosahedral cover

Formula for the sextic follows analogously

Algebraically Solving the Sextic

Understanding $A_{6} \curvearrowright \mathbb{P}^{2}$ gives

- an explicit isomorphism $\mathbb{P}^{2} / A_{6} \cong \mathbb{P}^{2}$
- a minimal generating set of A_{6}-invariant polynomials

Use these to construct $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ - analogue of Klein's icosahedral cover

Formula for the sextic follows analogously

Ideal Formula for the Sextic

Analytically Solving the Sextic

Hamilton's reduction to normal form for sextic defines analogue of Bring curve-a surface S_{H}

Expect that S_{H} is a $K 3$ surface
Expect \mathbb{P}^{2} is uniformized by $\mathcal{H} \times \mathcal{H}$
Generalize from elliptic modular functions to Hilbert modular functions

Have analogous diagram for total solution of the sextic.

Analytically Solving the Sextic

Hamilton's reduction to normal form for sextic defines analogue of Bring curve - a surface S_{H}

Expect that S_{H} is a $K 3$ surface

Expect \mathbb{P}^{2} is uniformized by $\mathcal{H} \times \mathcal{H}$

Generalize from elliptic modular functions to Hilbert modular functions

Have analogous diagram for total solution of the sextic.

Analytically Solving the Sextic

Hamilton's reduction to normal form for sextic defines analogue of Bring curve - a surface S_{H}

Expect that S_{H} is a $K 3$ surface
Expect \mathbb{P}^{2} is uniformized by $\mathcal{H} \times \mathcal{H}$

Generalize from elliptic modular functions to Hilbert modular functions

Have analogous diagram for total solution of the sextic.

Analytically Solving the Sextic

Hamilton's reduction to normal form for sextic defines analogue of Bring curve-a surface S_{H}

Expect that S_{H} is a $K 3$ surface
Expect \mathbb{P}^{2} is uniformized by $\mathcal{H} \times \mathcal{H}$

Generalize from elliptic modular functions to Hilbert modular functions

Have analogous diagram for total solution of the sextic.

Analytically Solving the Sextic

Hamilton's reduction to normal form for sextic defines analogue of Bring curve-a surface S_{H}

Expect that S_{H} is a $K 3$ surface
Expect \mathbb{P}^{2} is uniformized by $\mathcal{H} \times \mathcal{H}$

Generalize from elliptic modular functions to Hilbert modular functions

Have analogous diagram for total solution of the sextic.

Outlining the Total Solution of the Sextic

$\mathbb{P}^{2} \curvearrowleft A_{6}$

Outlining the Total Solution of the Sextic

[^1]
Outlining the Total Solution of the Sextic

$$
A_{6} \curvearrowright S_{H} \xrightarrow{2: 1}-\cdots \mathbb{P}^{2} \curvearrowleft A_{6}
$$

Outlining the Total Solution of the Sextic

$$
\mathcal{H} \times \mathcal{H} \curvearrowleft \widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3))
$$

$$
A_{6} \curvearrowright S_{H}-\underset{P^{2: 1}}{ } \curvearrowleft A_{6}
$$

where

$$
\widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3))=\operatorname{ker}\left(S L_{2}(\mathbb{Z}(\sqrt{2})) \rightarrow P S L_{2}\left(\mathbb{F}_{9}\right)\right)
$$

Outlining the Total Solution of the Sextic

???
$\mathcal{H} \times \mathcal{H} \curvearrowleft \widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3))$

$$
A_{6} \curvearrowright S_{H}-\underset{P^{2: 1}}{ } \curvearrowleft A_{6}
$$

where

$$
\widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3))=\operatorname{ker}\left(S L_{2}(\mathbb{Z}(\sqrt{2})) \rightarrow P S L_{2}\left(\mathbb{F}_{9}\right)\right)
$$

Outlining the Total Solution of the Sextic

where

$$
\widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3))=\operatorname{ker}\left(S L_{2}(\mathbb{Z}(\sqrt{2})) \rightarrow P S L_{2}\left(\mathbb{F}_{9}\right)\right)
$$

Outlining the Total Solution of the Sextic

where

$$
\widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3))=\operatorname{ker}\left(S L_{2}(\mathbb{Z}(\sqrt{2})) \rightarrow P S L_{2}\left(\mathbb{F}_{9}\right)\right)
$$

Outlining the Total Solution of the Sextic

$$
\begin{aligned}
& \text { ?? } \curvearrowright \text { ??? ----------> } \mathcal{H} \times \mathcal{H} \curvearrowleft \widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3)) \\
& \begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array} \\
& A_{6} \curvearrowright S_{H} \ldots \stackrel{2: 1}{ } \ldots \ldots \mathbb{P}^{2} \curvearrowleft A_{6}
\end{aligned}
$$

where

$$
\widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3))=\operatorname{ker}\left(S L_{2}(\mathbb{Z}(\sqrt{2})) \rightarrow P S L_{2}\left(\mathbb{F}_{9}\right)\right)
$$

Outlining the Total Solution of the Sextic

$$
\begin{aligned}
& \text { ?? } \curvearrowright \text { ??? }---------\rightarrow \mathcal{H} \times \mathcal{H} \curvearrowleft \widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3))
\end{aligned}
$$

where

$$
\widetilde{S L_{2}}(\mathbb{Z}(\sqrt{2} ; 3))=\operatorname{ker}\left(S L_{2}(\mathbb{Z}(\sqrt{2})) \rightarrow P S L_{2}\left(\mathbb{F}_{9}\right)\right)
$$

Research Goal (Re-stated): Complete and fully explain diagram.

Thank You!

Solving Polynomials After Klein: The Theory of Resolvent Degree

Benson Farb and Jesse Wolfson. Resolvent Degree, Hilbert's 13th Problem, and Geometry. Submitted for publication, (1)(1):85-106, 2018.

Mark L. Green. On the analytic solution of the equation of fifth degree. Compositio Math., 37(3):151-180, 1989.

Felix Klein. Über die Auflösung der allgemeinen Gleichungen fünften und sechsten Grades. Math. Ann., 61(1):50-71, 1905.

Felix Klein. Lectures on the icosahedron and the solution of equations of the fifth degree. Dover Publications, Inc., New York, N.Y., revised edition, 1956. Translated into English by George Gavin Morrice.

Oliver Nash. On Klein's Icosahedral Solution of the Quintic. arXiv e-prints, Aug 2013.

[^0]: ${ }^{1} \mathrm{~J}$. Dixmier, "Histoire du 13^{e} problème de Hilbert," in: Analyse diophantienne et géom’etrie algébrique, Cahiers Sém. Hist. Math., Sér 2, vol. 3, Univ. Paris VI, Paris, 1993, p85-94.

[^1]: $A_{6} \curvearrowright S_{H}$
 $\mathbb{P}^{2} \curvearrowleft A_{6}$

