Demonstration

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

Multimodal Knowledge Graph for Deep Learning Papers and
Code

Amar Viswanathan Kannan
Dmitriy Fradkin
Ioannis Akrotirianakis
Tugba Kulahcioglu
Arquimedes Canedo
Aditi Roy
firstname.lastname @siemens.com

Siemens Corporate Technology
Princeton, NJ, USA

ABSTRACT

Keeping up with the rapid growth of Deep Learning (DL) research is
a daunting task. While existing scientific literature search systems
provide text search capabilities and can identify similar papers,
gaining an in-depth understanding of a new approach or an ap-
plication is much more complicated. Many publications leverage
multiple modalities to convey their findings and spread their ideas -
they include pseudocode, tables, images and diagrams in addition to
text, and often make publicly accessible their implementations. It is
important to be able to represent and query them as well. We utilize
RDF Knowledge graphs (KGs) to represent multimodal informa-
tion and enable expressive querying over modalities. In our demo
we present an approach for extracting KGs from different modal-
ities, namely text, architecture images and source code. We show
how graph queries can be used to get insights into different facets
(modalities) of a paper, and its associated code implementation. Our
innovation lies in the multimodal nature of the KG we create. While
our work is of direct interest to DL researchers and practitioners,
our approaches can also be leveraged in other scientific domains.

CCS CONCEPTS

« Computing methodologies — Information extraction; Knowl-
edge representation and reasoning; Ontology engineering.

KEYWORDS

Knowledge graphs, Multimodal Information Retrieval, Deep Learn-
ing, Scientific Knowledge Graphs, Scientific Knowledge Graph Ex-
ploration

ACM Reference Format:

Amar Viswanathan Kannan, Dmitriy Fradkin, Ioannis Akrotirianakis, Tugba
Kulahcioglu, Arquimedes Canedo, Aditi Roy, Shih-Yuan Yu, Malawade Ar-
nav, and Mohammad Abdullah Al Faruque. 2020. Multimodal Knowledge
Graph for Deep Learning Papers and Code. In Proceedings of the 29th ACM

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

CIKM °20, October 19-23, 2020, Virtual Event, Ireland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10....$15.00
https://doi.org/10.1145/3340531.3417439

3417

Shih-Yuan Yu
Malawade Arnav

Mohammad Abdullah Al Faruque
shihyuay@uci.edu
malawada@uci.edu
alfaruqu@uci.edu

Department of Electrical Engineering and Computer
Science
University of California, Irvine, USA.

International Conference on Information and Knowledge Management (CIKM
°20), October 19-23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3340531.3417439

1 INTRODUCTION

Deep Learning (DL) has experienced a remarkable growth in re-
cent years with thousands of researchers working on new models,
architectures and applications every day. DL models are complex
to express and implement, and keeping up with all the latest publi-
cations and their accompanied source code becomes a great chal-
lenge both for researchers looking to develop new methods and
for practitioners who want to use existing methods to solve real-
world problems. The main goal of our project - Deep Code Curator
(DCC)! - is to address this issue by extracting the information from
scientific publications and the accompanying source code and rep-
resenting it as a unified knowledge graph. This allows researchers
and practitioners to pose expressive queries such as Show me all
the tensorflow functions used by CNNs in papers from CVPR between
the years 2013 and 2018 or Show me all the CNN publications which
have average pooling in their architecture diagrams . This can dra-
matically decrease the time, effort and resources spent curating DL
literature and algorithms. We focus on three modalities that can
provide useful information: text, images, and source code. We have
developed modules to process each of these modalities: text2graph,
image2graph, and code2graph. We show how KGs are extracted
for each modality from each paper, and how they are aligned and
merged into a single multimodal KG, based on the RDF framework.
We further show that the resulting KG can be used to identify,
compare and contrast deep learning techniques across different
publications and implementations.

2 RELATED WORK

There has been a lot of work in scientific literature on knowledge
base construction. Most of it focused on extracting information from
text and then representing it as knowledge graphs. For example, 7]
built knowledge graphs for degenerative diseases. The SciencelE task
competition from Semeval 2017 2 led to development of multiple
systems covering different aspects of knowledge graph generation.
Another example of KG creation from text alone is [4]. Semantic

!https://github.com/deepcurator/DCC
Zhttps://scienceie.github.io/

https://doi.org/10.1145/3340531.3417439
https://doi.org/10.1145/3340531.3417439

Demonstration

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

‘,TethGraph \ :
/l p— P | v owl:Thing
] ntity elation i » i
/ i Extraction Extraction | ‘k\\ ‘*‘ L C.OdEEntltY
h - Text Graph N DCC Schema p-- 0 FigureComponent
N\ 3 Function
: \ N 4
Image2Graph \\ RD F ImageComponent
Figure Content .}k Graph - L MDd.ﬂllt‘.V
Classification Analysis Alignment = Publication
N /" Image Graph icati
mage Grap 5 Virtuoso PublicationAuthor
Repository
Code2Graph ‘ SourceCodeFile
p-) TextEntity
; Graph /
Preprocessing Extraction | * ‘}&" tf
~ 4 Code Graph CSO
Figure 1: System Architecture Figure 2: Schema Hierarchy
scholar [2] also allows searching and some statistics about similar V@ owlThing)
. . v CodeEntity Function
papers. Recently, [1] described generation of a KG from source - TensorFlowDefined ImageComponent
code. Our system is different from the existing systems in that - UserDefined Modality
v-- @) FigureComponent Code

we want to represent the entire information of a Deep Learning
model from different modalities. The KGs extracted separately from
text, diagrams and source code are aligned into a single KG for
each paper and code, which are in turn aggregated into a single
multimodal KG representing the field of Deep Learning.

3 SYSTEM OVERVIEW

The architecture of our system is shown in Figure 1. The input to
the system is a set of papers and their associated code repositories.
From the paper abstracts and introductions the system extracts
entities and relations. Similarly, if the publication has an image of a
deep learning architecture, different components of the image are
extracted and an image knowledge graph is constructed. Finally,
a code knowledge graph is extracted from the referenced code
implementation. These graphs are then converted to a standard
RDF format [9] using the DCC schema ontology. This conversion
step also includes an alignment phase, which takes into account how
same or similar entities are represented in each of these modalities.
After alignment we get a RDF knowledge graph which can be stored
and queried in any triple store. All our code and documentation
can be found online3. In the following sections we describe the
different components of our system from the ontology design to
the different types of knowledge graph extractors.

3.1 Knowledge Graph Ontology

The knowledge graph ontology schema is the glue that unifies
the different modalities into a single representation. The top level
classes of our knowledge graph ontology ¢ are shown in Figure 2.
Figures 3 and 4 show lower levels of the ontology. Our ontology
consists of 278 object classes, 25 Object properties, 18 data prop-
erties and 2 annotation properties. The object and data properties
are used to link the instances together according to the linked data
principles.

3https://github.com/deepcurator/DCC
4https://osf.io/bq5h6/

3418

Figure

Text
AbstractText
BodyText
CaptionText
TitleText

ActivationBlock
ConcatBlock
ConvBlock
DeconvBlock
DenseBlock
DropoutBlock

----- EmbedBlock - Publication

----- FlattenBlock - PublicationAuthor
----- InputBlock -} Repository

----- LossBlock - SourceCodeFile

----- LSTMBlock TextEntity

----- LSTMSeqBlock GenericTerm
----- NormBlock Material

----- OQOutputBlock Method

----- PoolingBlock Metric

----- RNNBlock Module

OtherScientificTerm
Task

RNNSeqBlock
UnpoolingBlock

----- UpsamplingBlock - Gt
Figure 3: Code and Image Figure 4: Text schema
schema classes classes

3.2 Text2Graph

This module uses Named Entity Recognition (NER) to detect DL
based entities and Relation Extraction (RE) to determine relations
between two or more entities occurring within a sentence. The
graph is then built by constructing two nodes from each of the
entities and linking them by the named relationship edge. The
details of NER and RE are given below. Since this is a new task, we
created an annotated dataset of DL models and relations. We used
the web-based annotation tool brat® to perform text annotation.
The entity and relation types follow those suggested in [5].

e Named entity extraction: For NER we used spaCy® with
our own annotations to train the model. The entity types
that we used are (1) Task - e.g., information extraction, fore-
casting, image analysis, (2) Method - e.g., Neural Network,

Shttps://brat.nlplab.org/
®https://spacy.io

https://github.com/deepcurator/DCC

Demonstration

Attention, CRF, CNN, RNN, (3) Evaluation metric - e.g., F1,
Precision, Recall, ROC curve, (4) Material - e.g., data, datasets,
corpus, (5) Other scientific terms - e.g., dbpedia, Wikipedia,
CoNLL, and (6) Generic - e.g., model, approach, algorithm .
Relation extraction: For RE we leveraged a Bidirectional
LSTM model along with a neural attention mechanism to
capture the relationships [6]. We extract the following re-
lationships (1) Used for — e.g., B is used for A, B models A,
(2) Feature of - B belongs to A B is a feature of A, (3) Part of
- e.g., Our system includes models A and B, (4) Compare -
Comparing two works, (5) Conjunction - Symmetric relation,
(6) isA - e.g., DNN is a type of artificial neural network, and
(7) sameAs : ex. NMT, otherwise known as neural machine
translation.

3.3 Image2Graph

Our approach to converting DL architecture diagrams to KGs is
described in detail in [8]. Briefly, image2graph pipeline (shown in
Figure 5 consists of four main steps: (1) extraction of all the figures
from a research paper in PDF form, (2) selection of figures show-
ing DL model diagram, (3) analysis of the diagrams depicting DL
models, and (4) construction of a graph representing the informa-
tion extracted from the DL diagram. For each DL image we extract
the following relationships isA, foundIn, hasCaption, partOf, isType,
hasDescription, hasFlow, followedBy.

Y
B,

Text/Symbol
Segmentation

Text/Symbol
Recognition

Graph

A

Figure Extraction

Structure
Analysis

A

DL Diagram
Classification

Research Paper

DL Diagram
Analysis

Figure 5: Pipeline for image2graph

3.4 Code2Graph

The details of our approach to code2graph are described in [10].
We analyze the static syntactic structure of the code since this
does not require compilation and execution of code, making this
approach efficient and scalable to large code bases (i.e., many github
repositories representing the source code of DL papers). By utilizing
the ontology and vocabulary, we extract information on the DL
architecture implemented (e.g., layer types, activation functions,
optimizers, etc.) and construct a static call graph for the project
code. Child nodes in the generated tree structure can be used to
identify whether the function calls are TensorFlow or UserDefined.
Based on the call tree structure, the corresponding relations (such
as calls and followedBy) between functions are then added. By
inspecting all the source files in a project, we generate an RDF
graph to represent the project code.

Construction

3419

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

Publications # 539
DL Entities # 7999
DL Figures # 174
DL Repositories # | 256

Table 1: Knowledge graph statistics

3.5 Knowledge Graph Alignment

The knowledge graphs generated from different modalities rep-
resent complementary information. For example, a paper talking
about convolutional neural networks may also include architecture
diagram of the same. A code block referencing convolutional net-
work may also be present in the associated implementation. Each
of these concepts would be present as a separate node in the atomic
knowledge graphs. In the knowledge graph alignment step we
identify these complementary nodes and then align or link them
together. This results in a richer multimodal knowledge graph rep-
resentation of each paper. Knowledge graph alignment for the three
modalities involves the following two phases:

e Local graph alignment: During the knowledge graph map-
ping, we map respective modality instances of data to their
conceptual schema elements. For example the text entity
convolutional neural network is mapped to the schema ele-
ment Entity. The image entity convolutional neural network
is mapped to a ConvBlock and code entity would be mapped
to the respective subclass of TensorflowDefined. Since all of
these elements are connected to a single paper through the
Publication entity, we perform a local alignment by looking
for entities that are named similarly across modalities and
then linking them together.

Global graph alignment: We have decided to use an ex-
ternal well-curated knowledge graph called the Computer
Science Ontology (CSO) - a large scale research ontology
that categorizes 16 million publications, mainly in the field
of computer science as a taxonomy [3]. Out of the 14K top-
ics and 163K relationships, we mapped all our instances of
concepts from the text extraction (i.e., the entities of the text
extraction to their respective CSO components). The enti-
ties that were mapped were instances of Material, Method,
Metric and Task.We also performed string matching to link
entities from image and code to CSO. This resulted in a total
of 978 entities mapped to CSO.

The final statistics of the knowledge graph is shown in Table 1.

4 DEMONSTRATION OVERVIEW

In our demonstration, we first focus on how the atomic knowledge
graphs of each modality are extracted and then visualized as a single
Paper2Graph. While such a graph is useful for exploration of an
individual paper, data driven systems rely on large scale analysis
results and comparisons. KGs collected and unified over multiple
papers can provide insights into the state of the art in the field. Our
querying demo shows how our knowledge graph can be utilized to
perform data-driven analysis and model exploration.

Demonstration

4.1 Paper2Graph Demo

We merge and align the three different modality-specific KGs into
a single merged KG, which we refer to as as Paper2Graph, as de-
scribed in the previous section. Figure 6 annotates the different
subgraphs by numbers, the nodes by different colors based on the
entities they represent, and the edges by different arrows. Specifi-
cally, sub-graphs shown in boxes 1, 6 and 7 represent code2graph,
text2graph and image2graph, respectively. Boxes 4, 3, and 2 include
our overall Ontology. Box 4 covers Ontology concepts related to
the individual modalities of DCC (text, image and source code).
Box 2 covers TensorFlow defined functions (such as tf.constant,
tf.placeholder, tf.nn, tf.nn.conv2d, tf.nn.relu, tf.nn.tanh, tf.nn.softmax,
etc.) and box 3 covers the TensorFlow classes (such as tf.Graph,
tf Tensor, tf. Module, tv.Variable, etc).

Figure 6: The Paper2Graph KG combines all the modalities:
text (box 6), image (box 7) and source code (box 1). Our on-
tology is visible in boxes 2, 3 and 4.

We will demonstrate how, given an input pdf of a DL paper and
a link to a Tensorflow code repository, our system generates KGs
for individual modalities and a combined one for the paper. This
demo is available online in a Jupyter notebook”.

4.2 Graph Querying Demo

Select count(?type) as ?counttype ?cso ?type where {

?s <https://github.com/deepcurator/DCC/hasFigure>?f .

?component <https://github.com/deepcurator/DCC/partOf>?f .

?component <https://github.com/deepcurator/DCC/hasCSOEquivalent>?cso.
?s <https://github.com/deepcurator/DCC/hasRepository>?repository .
?repository <https://github.com/deepcurator/DCC/hasFunction>?y.

?y a ?type.

FILTER(!(STR(?type) = "https://github.com/deepcurator/DCC/UserDefined")).
}group by ?cso ?type ORDER by DESC(?counttype)

Table 2: Sample Multimodal SPARQL query showing fre-
quency of tensorflow modules across architecture diagrams

"https://github.com/deepcurator/DCC/tree/master/demo/run_all_modalities

3420

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

KGs from individual papers are combined into a large knowledge
base, which is stored a Virtuoso triple store backend. We demo a
Jupyter notebook for visualizing query results on this triple store.
We show example queries that explore the different relationships
between DL models, their architectures, source codes and other
aspects of the publication. For this demo, we create a DL knowledge
graph from paperswithcode 8. This demo is available online in a
Jupyter notebook’. More examples of KG queries can be found in
our repository.'?

4.3 Target Audience

The demonstrations are aimed at Deep Learning researchers and
practitioners. It also targets both experts and knowledge graph
enthusiasts. The enthusiasts can easily query the knowledge base
to look for advances in Deep Learning and also look for trends in
published papers. On the other hand the scientists could use this
system as a way to summarize the advances in the field. In addition
they could also dive deep into model specific implementations. The
demonstration is also of interest to the larger scientific community
since the approaches we developed are applicable to other scientific
domains.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Defense Advanced Re-
search Projects Agency (DARPA) Automating Scientific Knowledge
Extraction (ASKE) Program under contract no. HR00111990010.

REFERENCES

[1] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning
to Represent Programs with Graphs. arXiv:cs.LG/1711.00740

[2] Waleed Ammar, Dirk Groeneveld, Chandra Bhagavatula, Iz Beltagy, Miles Craw-

ford, Doug Downey, Jason Dunkelberger, Ahmed Elgohary, Sergey Feldman, Vu

Ha, et al. 2018. Construction of the literature graph in semantic scholar. arXiv

preprint arXiv:1805.02262 (2018).

Davide Buscaldi, Danilo Dessi, Enrico Motta, Francesco Osborne, and Diego Re-

forgiato Recupero. 2019. Mining scholarly publications for scientific knowledge

graph construction. In European Semantic Web Conference. Springer, 8-12.

[4] Natthawut Kertkeidkachorn and Ryutaro Ichise. 2017. T2KG: An End-to-End
System for Creating Knowledge Graph from Unstructured Text. In AAAI Work-
shops (AAAI Workshops), Vol. WS-17. AAAI Press. http://dblp.uni-trier.de/db/
conf/aaai/aaai2017w.html#Kertkeidkachorn17

[5] YiLuan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. 2018. Multi-task
identification of entities, relations, and coreference for scientific knowledge graph
construction. arXiv preprint arXiv:1808.09602 (2018).

[6] Makoto Miwa and Mohit Bansal. 2016. End-to-End Relation Extraction using
LSTMs on Sequences and Tree Structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Berlin, Germany, 1105-1116. https:
//doi.org/10.18653/v1/P16-1105

[7] Anderson Rossanez and Julio Cesar dos Reis. 2019. Generating Knowledge Graphs
from Scientific Literature of Degenerative Diseases. (2019).

[8] Aditi Roy, Ioannis Akrotirianakis, Amar V. Kannan, Dmitriy Fradkin, Arquimedes

Canedo, Kaushik Koneripalli, and Tugba Kulahcioglu. 2020. Diag2Graph: Repre-

senting Deep Learning Diagrams in Research Papers as Knowledge Graphs. In

IEEE International Conference on Image Processing.

Guus Schreiber and Yves Raimond. 2014. RDF 1.1 Primer. W3C Working Group

Note 25 (2014).

Shih-Yuan Yu, Ahmet Salih Aksakal, Sujit Rokka Chhetri, and Mohammad Abdul-

lah Al Faruque. 2020. Deep Code Curator — code2graph Part-II. Technical Report

TR-20-01. Center for Embedded and Cyber-Physical Systems University of Cali-

fornia, Irvine, Irvine, CA 92697-2620, USA. http://cecs.uci.edu/files/2019/05/TR-

19-01.pdf

—_
A

—_
2

[10

8https://paperswithcode.com/
“https://github.com/deepcurator/DCC/tree/master/demo/run_queries
Ohttps://github.com/deepcurator/DCC/blob/master/queries.py

https://github.com/deepcurator/DCC/tree/master/demo/run_all_modalities
https://arxiv.org/abs/cs.LG/1711.00740
http://dblp.uni-trier.de/db/conf/aaai/aaai2017w.html#Kertkeidkachorn17
http://dblp.uni-trier.de/db/conf/aaai/aaai2017w.html#Kertkeidkachorn17
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
http://cecs.uci.edu/files/2019/05/TR-19-01.pdf
http://cecs.uci.edu/files/2019/05/TR-19-01.pdf
https://github.com/deepcurator/DCC/tree/master/demo/run_queries

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Knowledge Graph Ontology
	3.2 Text2Graph
	3.3 Image2Graph
	3.4 Code2Graph
	3.5 Knowledge Graph Alignment

	4 Demonstration Overview
	4.1 Paper2Graph Demo
	4.2 Graph Querying Demo
	4.3 Target Audience

	Acknowledgments
	References

