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Abstract

Recently, road scene-graph representations used in conjunction with graph learn-
ing techniques have been shown to outperform state-of-the-art deep learning
techniques in tasks including action classification, risk assessment, and colli-
sion prediction. To enable the exploration of applications of road scene-graph
representations, we introduce roadscene2vec: an open-source tool for ex-
tracting and embedding road scene-graphs. The goal of roadscene2vec is
to enable research into the applications and capabilities of road scene-graphs
by providing tools for generating scene-graphs, graph learning models to gener-
ate spatio-temporal scene-graph embeddings, and tools for visualizing and an-
alyzing scene-graph-based methodologies. The capabilities of roadscene2vec
include (i) customized scene-graph generation from either video clips or data
from the CARLA simulator, (ii) multiple configurable spatio-temporal graph
embedding models and baseline CNN-based models, (iii) built-in functional-
ity for using graph and sequence embeddings for risk assessment and colli-
sion prediction applications, (iv) tools for evaluating transfer learning, and
(v) utilities for visualizing scene-graphs and analyzing the explainability of
graph learning models. We demonstrate the utility of roadscene2vec for
these use cases with experimental results and qualitative evaluations for both
graph learning models and CNN-based models. roadscene2vec is available
at https://github.com/AICPS/roadscene2vec.

1. Introduction

Autonomous Vehicles (AVs) are expected to revolutionize personal mobility,
logistics, and road safety [24]. However, recent accidents involving Tesla Au-
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topilot and Uber’s self-driving cars indicate that the development of safe and
robust AVs remains a difficult challenge [28, 29, 30]. Current statistics indicate
that perception and prediction errors were factors in over 40% of driver-related
crashes between conventional vehicles [26], leading both researchers and industry
leaders to race to address these problems via advanced AV perception systems.
Until recently, most AV perception architectures relied entirely on deep learning
techniques, centered around Convolutional Neural Networks (CNNs) and Multi-
Layer Perceptrons (MLPs) [48, 7, 37, 41], or model-based methods, which use
known road geometry information and vehicle trajectory models to estimate the
state of the road scene [35, 31]. Although these approaches have been successful
in typical use cases, they are limited in their ability to obtain a higher-level
human-like understanding of complex road scenarios as they cannot explicitly
capture inter-object relationships or the overall structure of the road scene.

Research has suggested that humans rely on cognitive mechanisms for iden-
tifying the structure of a scene and reasoning about inter-object relations when
performing complex tasks and identifying risk [6]. As such, capturing and iden-
tifying the complex relationships between road objects is a key in designing
an effective human-like AV perception system. To address the limitations of
these existing AV perception methods, several groups have proposed using a
variant of knowledge graphs known as scene-graphs to model the state of the
road and capture the relationships between objects [46, 27, 23]. A scene-graph
representation encodes rich semantic information of an image or observed scene,
essentially bringing an abstraction of objects and their complex relationships as
illustrated in Figure 1. Each of these related works proposes a different form
of scene-graph representation, but all demonstrated significant performance im-
provements over conventional perception methods. In [23], the authors propose
a 3D-aware egocentric spatio-temporal interaction framework that uses both an
Ego-Thing graph and an Ego-Stuff graph, which encode how the ego vehicle in-
teracts with both moving and stationary objects in a scene, respectively. In [27],
the authors propose a pipeline using a multi-relational graph convolutional net-
work (MR-GCN) for classifying the driving behaviors of traffic participants.
The MR-GCN is constructed by combining spatial and temporal information,
including relational information between moving objects and landmark objects.
In our prior work [46], we demonstrated that a spatio-temporal scene-graph
embedding can be used to identify the subjective risk of driving maneuvers sig-
nificantly more effectively than the state-of-the-art deep learning method. In
addition, our method is able to better transfer knowledge and is more explain-
able.

Although a wide range of scene-graph based AV perception approaches have
been proposed, each method was developed from scratch, requiring significant
time and resource investment by each research group. Although tools exist
to perform preprocessing and graph learning (e.g., Pytorch and Pytorch Ge-
ometric), to the best of our knowledge there exists no tool for systematically
converting road scenes into scene-graphs in this field. As a result, each research
group must start developing their scene-graph construction methodology from
the ground up, wasting time and effort that could be better spent using the
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Figure 1: How camera data can be used to construct a road scene-graph representation.

resultant scene-graph representations to solve more complex research problems.
To address this problem, we propose roadscene2vec: a tool for systemati-
cally extracting and embedding road scene-graphs. roadscene2vec enables
researchers to quickly and easily extract scene graphs from camera data, evalu-
ate different graph construction methodologies, and use several different graph
and machine learning algorithms to generate spatio-temporal graph embeddings
for a wide range of AV tasks. We envision roadscene2vec to serve the follow-
ing use cases:

• Converting image-based datasets as well as datasets generated by the
CARLA simulator [11] into scene-graphs.

• Enabling the exploration of different scene-graph construction methodolo-
gies for a given application via a flexible, reconfigurable, and user-friendly
scene-graph extraction framework.

• Allowing researchers to explore various spatio-temporal graph embedding
methods, supporting customized algorithms for further design exploration.

• Providing a set of baselines drawn from state-of-the-art works used for
different AV applications (CNN and CNN-LSTM based algorithms).

• We provide scene-graph visualization utilities to enhance design space ex-
ploration for graph construction.

We target camera data as opposed to lidar, radar, or other sensor types since
images are the most rich and detailed modality, providing high resolution details
about the scene as well as color information. This information can be used for
better identifying the context of the scene and relations between participants.
If other modalities are added, it is unlikely that much more information will
be added to the scene graph; only the robustness of the system and precision
of the graph will be improved. Besides, current state-of-the-art AV perception
architectures utilizing sensor fusion still have shortcomings [12]. Furthermore,
the vast majority of publicly available AV datasets primarily contain image data.

1.1. Novel Contributions

Our novel contributions for this research community are:
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1. We present roadscene2vec: a flexible scene-graph construction and em-
bedding framework that allows researchers to experiment with different
graph extraction formulations to find the best one for their problem.

2. We provide an end-to-end graph learning framework for modeling the
scene-graph representations. Our framework enables automated experi-
mentation and metrics logging over a wide range of graph learning AV
applications. We also provide templates to facilitate users defining their
own models and problems.

3. We provide many visualization tools and utilities for inspecting and un-
derstanding the scene-graphs including attention maps, color coding by
classes or relation type, birds-eye view projection, embedding projection,
etc. This enables users to interpret their results easily without having to
design their own visualizer.

4. We provide state-of-the-art CNN-based models drawn from recent AV
papers for cross-comparison with graph-learning based techniques.

1.2. Paper Organization

The rest of our paper is laid out as follows. In Section 2 we discuss re-
lated works. In Section 3 we introduce the core functionality of our tool and
its methodology. In Section 4 we provide usage examples. In Section 6 we
demonstrate the practical real-world value of our tool by evaluating it on sev-
eral common use cases. Finally, in Section 7 we present our conclusions.

2. Related Work

In this section, we begin by describing some general AV design philosophies.
Then we talk about some graph-based approach used in scene understanding.
Lastly, we briefly discuss the existing tools or libraries.

2.1. AV Design Methodologies

The two common design approaches for AV systems are (i) end-to-end deep
learning architectures [47] and (ii) modular architectures. Modular approaches
are implemented as a pipeline of separate components for performing each sub-
task of the AV (e.g., perception, localization, planning, control), while end-to-
end approaches generate actuator outputs (e.g., steering, brake, accelerator)
directly from their sensory inputs [7]. One advantage of a modular design ap-
proach is the division of a task into an easier-to-solve set of sub-tasks that
have been addressed in other fields such as robotics, computer vision, and ve-
hicle dynamics, from which prior knowledge can be leveraged. However, one
disadvantage of such an approach is the complexity of implementing, running,
and validating the complete pipeline [47]. End-to-end approaches can achieve
good performance with a smaller network size and lowed implementation costs
because they perform feature extraction from sensor inputs implicitly through
the network’s hidden layers [7]. However, the authors in [9] point out that the
needed level of supervision is too weak for the end-to-end model to learn critical
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control information (e.g., from image to steering angle), so it can fail to handle
complicated driving maneuvers or be insufficiently robust to disturbances.

A third approach called the direct perception approach was first proposed
by DeepDriving [9]. In this approach, a set of affordance indicators, such as
the distance to lane markings and other cars in the current and adjacent lanes,
are extracted from an image and serve as an intermediate representation (IR)
for generating the final control output. They show that the use of this IR
is effective for simple driving tasks such as lane following as well as enabling
better generalization to real-world environments. Similarly, [3] uses a collection
of filtered images as the IR. They state that the IR used in their approach allows
the training to be conducted on either real or simulated data, facilitating testing
and validation in simulations before testing on a real car. Moreover, they show
that it is easier to synthesize perturbations to the driving trajectory in the IR
than at the raw sensor inputs themselves, enabling them to produce non-expert
behaviors such as off-road driving and collisions. The authors in [48] use Mask-
RCNN [16] to color the vehicles in each input image, producing a form of IR.
In contrast to the works mentioned above, roadscene2vec utilizes a scene-
graph IR that encodes the spatial and semantic relations between all the traffic
participants in a frame. This form of representation is similar to a knowledge
graph with the key distinction that scene-graphs explicitly encode knowledge
about a visual scene.

2.2. Graph-based Driving Scene Understanding

In the literature, several works have applied graph-based formulations for
driving scene understanding. In [23], the authors propose a 3D-aware egocen-
tric Spatio-temporal interaction framework that uses both an Ego-Thing graph
and an Ego-Stuff graph, which encode how the ego vehicle interacts with both
moving and stationary objects in a scene, respectively. In [27], the authors
propose a pipeline using a multi-relational graph convolutional network (MR-
GCN) for classifying the driving behaviors of traffic participants. The MR-GCN
is constructed by combining spatial and temporal information, including rela-
tional information between moving objects and landmark objects. In [38], the
authors propose extracting road scene graphs in a manner that includes pose
information for the purpose of scene layout reconstruction. A similar approach
was also proposed in [21]. Authors in [25] propose using a probabilistic graph
approach for explainable traffic collision inference. In our prior work, we demon-
strated that a scene-graph representation used with an MRGCN leads to state
of the art performance at assessing the subjective risk of driving maneuvers [46].
In our tool, we implement examples of multi-relational graph learning models
(MRGCN and MRGIN) as well as model skeletons to enable users to easily
evaluate other graph learning model formulations.

2.3. Graph Extraction and Graph Learning Libraries

Other libraries for extracting scene-graphs from input images have been pro-
posed. [44] proposed the Graph R-CNN model, which extracts scene graphs by
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identifying the set of individual objects in the image before identifying the spa-
tial relations between the objects. With this process, Graph R-CNN is able
to extract the spatial features of the scene in the form of a scene-graph. [36]
provides a benchmark for evaluating several kinds of scene-graph generation
models on image datasets. The scene-graph representations extracted by these
tools is then used for semantic understanding and labeling tasks, such as image
captioning and visual question answering. Although these tools and models are
successful at these tasks, they do not incorporate specific domain knowledge
relevant to the AV problem space. Autonomous driving is a highly complex
problem on its own so AV algorithms must utilize domain knowledge including
driving rules, road layout and markings, as well as light and sign information.
Furthermore, AV algorithms must account for temporal factors; the aforemen-
tioned tools operate on individual images and thus do not account for these
safety-critical temporal factors.

Regarding graph learning tools and libraries, several tools such as Graph-
GYM [45], DGL [40], and OGB [18] exist for quickly and easily evaluating
several graph learning models on problems including node/graph classification
and regression. However, none of these pre-existing tools enable scene-graph
generation; they can only be used with existing graph data. Our proposed tool
is the only tool which enables both the extraction and learning of AV-specific
scene-graphs.

3. Roadscene2vec Architecture

This section introduces roadscene2vec’s architecture, features, and in-
tended workflow. Our roadscene2vec is implemented as a Python library,
integrating various external packages such as APIs from PyTorch, PyTorch Geo-
metric, Detectron2, and CARLA. roadscene2vec consists of four key modules:
(i) data generation (data.gen) and preprocessing (data.proc), (ii) scene-graph
extraction (scene graph), (iii) model training and evaluation (learning), and
(iv) visualization (util). We detail each module in the following subsections.

3.1. Dataset Generation Tools (data.gen)

The module data.gen in roadscene2vec allow researchers to synthesize
driving data for their research. To successfully handle complex and long-tail
driving scenarios, deep learning approaches typically train their models on large
datasets that contain a wide range of ”corner cases.” However, generating such
datasets is expensive and time-consuming in the real-world [11]. Thus, most
researchers instead use synthesized datasets containing plenty of these corner
cases to evaluate their research ideas.

For this purpose, roadscene2vec integrates the open-source driving sim-
ulator, CARLA [11], which allows users to generate driving data by controlling
a vehicle (either in manual mode or autopilot mode) in simulated driving sce-
narios. On top of that, roadscene2vec also integrates the CARLA Scenario
Runner which contains a set of atomic controllers that enable users to automate
the execution of complex driving maneuvers.
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Figure 2: Workflow for using roadscene2vec to preprocess a dataset; extract scene-graphs
from the dataset; and select, train, and evaluate a model on the dataset.

In roadscene2vec, data.gen produces each driving clip in CARLA’s sim-
ulated world by (i) selecting one autonomous car randomly, (ii) switching its
mode to manual mode, and (iii) using the Scenario Runner to command the ve-
hicle to change lanes. In addition, the data generation tool in roadscene2vec
manipulates the various presets in CARLA to specify the number of cars, pedes-
trians, weather and lighting conditions, etc., for making the generated driving
data more diverse. Moreover, through the APIs provided by the Traffic Manager
(TM) of the CARLA simulator, the tool can customize the driving characteris-
tics of every autonomous vehicle in the simulated world, such as the intended
speed considering the current speed limit, the chance of ignoring the traffic
lights, or the chance of neglecting collisions with other vehicles. Overall, the
tool allows users to simulate a wide range of very realistic urban driving envi-
ronments and generate synthesized datasets suitable for training and testing a
model.

Using the CARLA Python API and the CARLA Scenario Runner, we im-
plemented a tool in the data.gen module for extracting the road scene’s state
information as well as the corresponding ego-centric camera images directly
from the CARLA simulator for use in roadscene2vec. For each frame in a
driving sequence, we store the attributes of the objects in the scene as a Python
dictionary. These attributes include object type, location, rotation, lane assign-
ment, acceleration, velocity, and light status. For static objects such as traffic
lights and signage, we store the type of object, its location, and light state (light
color) or sign value (e.g., speed limit). We refer to the datasets in this format
as CARLA datasets. In addition, our tool supports using image-based datasets,
such as the camera data extracted from CARLA or the Honda Driving Dataset
[32] used in our experiments. The code provided in our data.gen module can be
modified to support other driving actions, such as turning, accelerating, braking,
and overtaking.

Under the data.gen module, roadscene2vec also provides an annotation
tool for quickly and easily labeling both CARLA datasets and image datasets.
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The annotator offers a graphical user interface (GUI) that enables users to
view, label, exclude, or trim specific driving sequences. Our annotator enables
users to assign one label for each sequence and supports averaging multiple
independent labelers’ decisions. Our annotators GUI is shown in Figure 3. In
addition to the annotation tool, we also provide dataset utilities such as train-
test splitting, k-fold cross-validation, and downsampling as part of the trainers
in the learning.util module.

Figure 3: The user interface of the annotator tool, used to label, filter, and trim datasets.

3.2. Data Preprocessing (roadscene2vec.data.proc)

The data storage and preprocessing functions are implemented through the
data.proc module of roadscene2vec. To use a new dataset with road-
scene2vec, it must first have the correct directory structure defined in our
repository. Next, the input dataset can go through one of the two workflows
shown in Figure 2: (i) the dataset is preprocessed into a ”RawImageDataset”
to be used with CNNs and other image processing models directly, or (ii) the
dataset is sent to the corresponding scene-graph extractor to generate scene-
graph representations of every frame in the dataset (discussed in Section 3.3).
The preprocessing step is necessary for the conventional deep-learning models
as the input images often need to be resized, reshaped, or sub-sampled before
being trained with models to meet memory and space constraints. After pre-
processing, the RawImageDataset object stores the sets of driving video clips as
image sequences, the labels associated with the video clips, and metadata (such
as sequence name/action type). For each image in each clip in the dataset, the
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image preprocessor loads the image using OpenCV, resizes and recolors the im-
age according to the configuration settings, and stores the image as a PyTorch
Tensor. The resulting RawImageDataset object is then serialized and stored as
a pickle (.pkl) file.

3.3. Road Scene-Graph Extraction (roadscene2vec.scene graph.extraction)

Here, we describe how an input dataset is converted into a ”SceneGraph-
Dataset” object via our scene-graph extraction framework. We first describe
how the entities and relations in the scene-graph are defined and configured
before discussing the specific steps needed to extract scene-graphs from both
CARLA and image-based datasets.

3.3.1. Entity and Relation Extraction

Parameter Description
actor names The list of object types. The default list

is based on the actor types defined by the
CARLA simulator.

relation names The list of all implemented relation types.
car names / moto names /
bicycle names / etc.

Object names defined in the CARLA simula-
tor. These lists are used to cross-reference the
object type for a given CARLA vehicle name.

directional thresholds Defines the set of enabled directional relations
and their thresholds in degrees.

directional relation list Defines the pairs of object types for which di-
rectional relations will be extracted.

proximity thresholds Defines the set of enabled distance relations
and their thresholds in feet.

proximity relation list Defines the pairs of object types for which
proximity relations will be extracted.

lane threshold Represents 50% of the width of a lane in feet.
If an object is more than this distance from
the ego car’s center, it is considered to be in
the left or right lane.

Table 1: Scene graph configuration options and their descriptions. Each of these parameters
can be reconfigured by the user to produce custom scene-graphs.

A list of roadscene2vec’s user-configurable scene-graph extraction settings
is shown in Table 1. In our formulation, each ”actor” (object) in the scene-graph
is assigned a type from the set {car, motorcycle, bicycle, pedestrian, lane, light,
sign}, matching those defined by CARLA. Users can reconfigure the set of object
types to support other dataset types, applications, or ontologies.

The default relation extraction pipeline we implement identifies three kinds
of pair-wise relations: proximity relations (e.g. visible, near, very near, etc.),
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directional relations (e.g. Front Left, Rear Right, etc.), and belonging rela-
tions (e.g. car 1 isIn left lane). Two objects are assigned the proximity re-
lation, r ∈ {Near Collision (4 ft.), Super Near (7 ft.), Very Near (10 ft.),
Near (16 ft.), Visible (25 ft.)} provided the objects are physically separated
by a distance that is within that relation’s threshold. The directional rela-
tion, r ∈ {Front Left, Left Front, Left Rear, Rear Left, Rear Right, Right Rear,
Right Front, Front Right}, is assigned to a pair of objects, in this case between
the ego-car and another car in the view, based on their relative orientation and
only if they are within the near threshold distance from one another. Addition-
ally, the isIn relation identifies which vehicles are on which lanes (see Fig. 1). We
use each vehicle’s horizontal displacement relative to the ego vehicle to assign
vehicles to either the Left Lane, Middle Lane, or Right Lane using the known
lane width. Our current abstraction only considers three-lane areas, and, as
such, we map vehicles in all left lanes and all right lanes to the same Left Lane
node Right Lane node, respectively. If a vehicle overlaps two lanes (i.e., during
a lane change), it is mapped to both lanes.

The set of possible entity types, relation types, relation thresholds, and valid
object pairs is defined in the scene graph config file. These settings are entirely
user re-configurable, enabling broad design space exploration of different graph
extraction methodologies. After graph extraction is completed, the set of all
scene-graph sequences, metadata, and labels are saved as a SceneGraphDataset.

3.3.2. CARLA Scene-Graph Extraction

Since the CARLA datasets contain a dictionary with a list of objects and
their attributes, we directly use this dictionary to initialize the nodes in the
scene-graph. Each node is assigned its type label from the set of actor names
and its corresponding attributes (e.g., position, angle, velocity, current lane,
light status, etc.) for relation extraction. Once all nodes are added to the
scene-graph, we extract relations between each pair of objects in the scene.

3.3.3. Image Scene-Graph Extraction

To extract scene-graphs from image-based datasets, the set of objects in a
scene and their attributes must be extracted from each image. We use Mask-
RCNN [16] to extract the set of objects in the image as well as their bounding
boxes. Next, we compute the inverse-perspective mapping transformation of the
image, yielding a top-down ’birds-eye view’ (BEV) projection of the scene. By
generating this projection and projecting the bounding box coordinates from
the original image into the birds-eye view, we can estimate the position of each
vehicle relative to the ego-vehicle with reasonably high fidelity. This position
information, along with the object class information, is used to construct the
scene-graphs. However, the BEV projection needs to be re-calibrated for each
dataset, as typically, each dataset uses a different camera angle and camera
configuration. To facilitate this calibration step, we provide a BEV calibration
utility in scene graph.extraction.bev. This utility provides an interactive
way for the user to select the road area and calibrate the BEV projection for a
new dataset with a single step.
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3.3.4. Scene-Graph Visualization

Our scene-graph visualization tool, located in the roadscene2vec.util mod-
ule, consists of a GUI that simultaneously displays an input image side by side
with its corresponding scene-graph, as is shown in Figure 8. This tool en-
ables researchers to experiment with a wide range of relation types and distance
thresholds and quickly optimize their scene-graph extraction settings for their
specific application or dataset.

3.4. Scene-Graph Embedding (roadscene2vec.learning)

The learning module contains our framework for splitting datasets as well
as training, testing, and scoring models at various tasks. It also contains our
graph learning models as well as the baseline deep learning models. The model
submodule contains the model definitions while the util submodule contains
the training, evaluation, and scoring functions. The training code supports im-
plementing k-fold cross-validation, a user-definable train:test split, and down-
sampling and class weighting to correct dataset imbalances. The model specifi-
cation, training hyperparameters, and dataset configuration settings are loaded
from the learning config file, which is user-modifiable. Next, we introduce the
models available in roadscene2vec.

3.4.1. Graph Learning Models (roadscene2vec.learning.model)

Graph Convolutions

Graph Pooling

Global Readout

Temporal Modeling

MRGINMRGCN

SAGPool TopKPool none

max mean add

mean LSTM_last LSTM_attn LSTM_sum

Configuration Options

conv. type, # layers, hidden size

pooling type, pooling ratio

temporal type, input size, 

output size

readout type

Figure 4: Graph learning model configuration options provided in roadscene2vec.

The graph learning models we provide in roadscene2vec enable various
configurations of both spatial modeling and temporal modeling components as
shown in Figure 4. The spatial modeling components that can be configured
include (i) graph convolution layers, (ii) graph pooling and graph attention
layers, and (iii) graph readout operations. The temporal modeling components
that can be configured include (i) temporal modeling layers and (ii) temporal
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attention layers. Our experiments use MRGCN and MRGIN models that are
identical in structure and differ only in the type of spatial modeling used. Next,
we discuss these components in more detail.

Spatial Modeling (Spatial Model). We provide two multi-relational graph
convolution implementations based on (i) graph convolutional networks (GCNs)
[19] and (ii) graph isomorphism networks (GINs) [43]. These layers propagate
node embeddings across edges via graph convolutions, resulting in a new set of
node embeddings. The two implementations differ with regard to how data is
propagated through successive graph convolutions. Graph pooling is used to
filter the set of node embeddings in the graph to only those most useful for the
task. We enable two types of graph pooling layers extended for multi-relational
use cases: Self-Attention Graph Pooling (SAGPool) [22] and Top-K Pooling
(TopkPool) [14]. After pooling, a global readout operation is used to collect the
set of pooled node embeddings into a unified graph embedding. We implement
max, mean, and add readout operations.

Temporal Modeling (Temporal Model). The temporal model we implement
uses Long Short-Term Memory (LSTM) layers to convert the sequence of scene-
graph embeddings to either (i) one spatio-temporal embedding (for sequence
classification tasks) or (ii) a sequence of spatio-temporal embeddings (for graph
classification/prediction tasks). For graph classification/collision prediction tasks,
the output from an LSTM layer for each input scene-graph embedding is col-
lected as a sequence of spatio-temporal scene-graph embeddings P that is then
sent to an MLP layer to produce the final set of model outputs. For sequence
classification tasks, a temporal readout operation is applied to P to compute a
single spatio-temporal sequence embedding z by (i) extracting only the last hid-
den state of the LSTM pT (LSTM-last), (ii) taking the sum over P, or (iii) using
a temporal attention layer (LSTM-attn) to compute an attention-weighted sum
of the different elements of P as described in [2].

3.4.2. Baseline Models (roadscene2vec.learning.model)

In addition to the graph learning models that are core to roadscene2vec,
we also provide a set of baseline deep learning models for quickly and easily
comparing to typical image-processing approaches. These baselines include (i)
a ResNet-50 [17] CNN classifier and (ii) a CNN+LSTM classifier [48]. The
motivation for using these baselines stems from their prevalence in AV im-
age processing tasks, such as risk assessment [48]. Users can easily use other
graph/deep-learning models with our framework as long as their model follows
the same, typical PyTorch model structure.

3.4.3. Performance Evaluation and Hyperparameter Optimization

To enable live monitoring of training runs and in-depth analysis of the ef-
fects of different hyperparameter settings on performance, we integrate our li-
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brary with Weights and Biases (W&B)2. W&B is a free, publicly available tool
for tracking experiments, visualizing performance, identifying hyperparameter
importance, and organizing results. We believe this integration will enable re-
searchers to identify trends in the data and optimize model performance more
quickly.

4. Usage Examples

In this section, we describe some of roadscene2vec’s use-cases. First, Sec-
tion 4.1 exhibits a fundamental use-case in which an image frame I is converted
into a scene-graph g and then into a fixed-length embedding hg. Next, the use
cases of roadscene2vec for two risk-based autonomous driving applications
(subjective risk assessment and collision prediction) are described in Section 4.2
and Section 4.3, respectively. In Section 4.4, we discuss how roadscene2vec
can be used for performing and evaluating transfer learning. Finally, in Section
4.5, we show how roadscene2vec can be used to analyze the explainability of
the graph learning models.

4.1. Use Case 1: Converting an Ego-Centric Observation Into a Scene-Graph

Our high-level algorithm for converting an input image into a scene-graph is
shown in Algorithm 1. Let us walk through a typical workflow for converting
an image dataset into a set of scene-graph embeddings. First, the image is
preprocessed by the preprocessor to set the dataset format and image sizing.
Next, the extractor extracts the scene-graph from the image. These scene-graphs
can then be visualized using the visualizer tool we provide. The following script
streamlines the execution of this use case:

> python examples/use_case_1.py

These scripts take configuration information directly from the data config and
scene graph config files in the config module. The config files indicate which
type of dataset is being used (CARLA or image-based) as well as the location
and extraction settings for the dataset. The scene graph config file also allows
the reconfiguration of the relation extraction settings as shown in Table 1. The
choice of relation extraction settings changes the scene-graph structure, which
can change how the graph learning model processes the data.

4.2. Use Case 2: Subjective Risk Assessment

In prior AV research, attempts to improve vehicle safety have involved mod-
eling either the objective risk or the subjective risk of driving scenes [15, 13, 5].
The objective risk is defined as the objective probability of an accident occurring
and is typically determined by statistical analysis [15]. In contrast, subjective
risk refers to the driver’s own perceived risk and is an output of the driver’s

2https://wandb.ai/
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Algorithm 1: Use Case 1 - Extracting a sequence of scene-graphs from
a driving clip.

1 Input: A sequence of images from a driving video clip I.
2 Output: A sequence of scene graphs G for I.
3 def IMG2GRAPH (It):
4 Ot ← Obj Detection(It)
5 At ← Attr Extraction(It, Ot)
6 Gt ← Graph Extraction(Ot, At)
7 return Gt

8 def EXTRACT SEQ (I):
9 G← { }

10 for It in I do
11 Gt ← IMG2GRAPH (It)
12 end
13 return G

14 G← EXTRACT SEQ (I)
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Figure 5: The architecture of our configurable scene-graph based AV perception model. Our
two pre-implemented temporal modeling pipelines for specific AV tasks are shown (sequence
classification and graph prediction). However, users can remove or replace these model com-
ponents for performing other AV tasks such as graph classification or scenario classification.

cognitive process [13, 5]. Since subjective risk accounts for the human behavior
perspective and its critical role in anticipating risks [4, 5, 13], it has the potential
to assess contextual risk better than objective methods and thus better assure
passenger safety. Further, studies such as [39, 15] provide direct evidence that
a driver’s subjective risk assessment is inversely related to the risk of traffic
accidents. Within this context, AVs must be able to understand driving scenes
and quantify the subjective risk of driving decisions.

Given this motivation, we show that the graph learning models available
in roadscene2vec can be used to convert these extracted scene-graphs into
spatio-temporal scene-graph embeddings for the task of subjective risk assess-
ment, as was done in our prior work [46].
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4.2.1. Problem Formulation

In our prior work [46], and here, we make the same assumption used in [48]
that the set of driving sequences can be partitioned into two jointly exhaustive
and mutually exclusive subsets: risky and safe. We denote the sequence of
images of length T by I = {I1, I2, I3, ..., IT }. We assume the existence of a
spatio-temporal function f that outputs whether a sequence of driving actions
x is safe or risky via a risk label y, as given in Equation 1.

y = f(I) = f({I1, I2, I3, ..., IT−1, IT }), (1)

where

y =

{
(1, 0), if the driving sequence is safe
(0, 1), if the driving sequence is risky.

(2)

Overall, the goal of the model is to learn to approximate the function f . Our
algorithmic implementation of this use case is shown in Algorithm 2.

Algorithm 2: Use Case 2 - Scene-graph embedding for risk assessment

1 Input: A sequence of images from a driving video clip I.

2 Output: Risk assessment Ŷ .
3 def SEQ2VEC(G):
4 hG ← { }
5 for Gt in G do
6 hGt ← Spatial Model(Gt)
7 end
8 Z ← Temporal Model(hG)
9 ŷ0, ŷ1 ← Activation(MLP(Z))

10 if ŷ1 ≥ ŷ0 then
11 return 1
12 else if ŷ0 > ŷ1 then
13 return 0

14 def RISK ASSESS(I):
15 G← EXTRACT SEQ(I)

16 Ŷ ← SEQ2VEC(G)

17 return Ŷ

18 Ŷ ← RISK ASSESS(I)

4.2.2. Training

To achieve this goal, we train the graph learning model using the extracted
sequences of scene-graphs as inputs and the subjective risk labels given by hu-
man annotators for each sequence. As such, the problem becomes a simple
sequence classification problem, where the goal is to classify a given sequence of
images as ”risky” or ”safe”. The configuration settings for training the model
are available in the learning config file in the config module. The following
command can be used to train the model for risk assessment:
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> python examples/use_case_2.py

4.3. Use Case 3: Collision Prediction

Figure 6: Demonstration of collision prediction using scene-graphs. Each node’s color indicates
its attention score (importance to the collision likelihood) from orange (high) to green (low).

In our third use case, we demonstrate how roadscene2vec can be used
to study approaches for predicting future vehicle collisions. In contrast to Use
Case 2, which is a sequence classification problem, collision prediction has safety-
critical time constraints and uses the history of prior scene-graphs to make pre-
dictions about the state of future graphs. Current statistics indicate that per-
ception and prediction errors were factors in over 40% of driver-related crashes
between conventional vehicles [26]. However, a significant number of reported
AV collisions are also the result of these errors [33, 42]. With this motivation,
we show that scene-graphs can be used to represent road scenes and model
inter-object relationships to improve perception and scene understanding. An
example of our methodology is shown in Figure 6.

4.3.1. Problem Formulation

We formulate the problem of collision prediction as a time-series classification
problem where the goal is to predict if a collision will occur in the near future.
Our goal is to accurately model the spatio-temporal function f , where

Yn = f({I1, ..., In−1, In}),Yn ∈ {0, 1}, for n > 2, (3)

where Yn = 1 implies a collision in the near future and Yn = 0 otherwise. Here
the variable In denotes the image captured by the on-board camera at time n.
The interval between each frame varies with the camera sampling rate. Our
implementation of Use Case 3 is shown in Algorithm 2.

4.3.2. Training

To train a model for this application, we adjust the model to produce one
output per graph instead of one output per sequence. For the application of
collision prediction, we also assign each frame in a video clip a label identical
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Algorithm 3: Use Case 3 - Scene-graph embedding for collision pre-
diction

1 Input: A sequence of images from a driving video clip I.

2 Output: Sequence of collision likelihood predictions: Ŷ .
3 def GRAPH2VEC(Gt, pt−1, ct−1):
4 hGt ← Spatial Model(Gt)
5 pt, ct ← Temporal Model(hGt , pt−1, ct−1)
6 ŷ0, ŷ1 ← Activation(MLP(pt))
7 if ŷ1 ≥ ŷ0 then
8 return 1, pt
9 else if ŷ0 > ŷ1 then

10 return 0, pt
11 def COLLISION PRED(I):
12 G← EXTRACT SEQ(I)
13 p0, c0 ← [0, 0, ..., 0] , [0, 0, ..., 0]

14 Ŷ ← { }
15 for Gt in G do

16 Ŷt, pt ← GRAPH2VEC(Gt, pt−1, ct−1)
17 t← t+ 1

18 end

19 return Ŷ

20 Ŷ ← COLLISION PRED(I)

to the entire clip’s label to train the model to identify the preconditions of a
future collision and predict it as early as possible. The following command can
be used to train the model for collision prediction:

> python examples/use_case_3.py

4.4. Use Case 4: Transfer Learning

Models trained on simulated datasets must be able to transfer their knowl-
edge to real-world driving scenarios as they can differ significantly from sim-
ulations. One key advantage of using scene-graphs is that they are a form
of Intermediate Representation (IR), meaning that they provide a higher level
of abstraction compared to image data alone. This abstraction means that
scene-graphs are generally better able to transfer knowledge across datasets
and domains, such as from simulated data to real-world driving data. Since
this is a key benefit of using a graph-based approach and is a critical use case
for validating AV safety, roadscene2vec supports running transfer learning
experiments between any two datasets. To implement this use case, we use the
original dataset to train the model and use the user-specified transfer dataset to
test the model. No additional domain adaptation is performed. The workflow
for Use Case 4 is shown in Algorithm 4. The following script runs an example
of transfer learning.
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> python examples/use_case_4.py

Algorithm 4: Use Case 4 - Transfer learning evaluation

1 Input: Source dataset DS, transfer dataset DT , model m, and
training epochs E.

2 Output: Transfer learning result RT .
3 def TRAIN(D, m, E):
4 for epoch in E do
5 X,Y ← D
6 O ← m(X)
7 L← Loss Function(O, Y )
8 m← Update Model(L, m)

9 end
10 return m

11 def EVALUATE(D, m):
12 X,Y ← D
13 O ← m(X)
14 R← Score(O, Y )
15 return R

16 def TRANSFER KNOWLEDGE(DS , DT ,m,E):
17 m′ ← TRAIN(DS ,m,E)
18 RT ← EVALUATE(DT ,m

′)
19 return RT

20 RT ← TRANSFER KNOWLEDGE(DS , DT ,m,E)

4.5. Use Case 5: Explainability Analysis

Explainability refers to the ability of a model to communicate the factors that
influenced its decision-making process for a given input, particularly those that
might lead the model to make incorrect decisions [1, 20]. Since deep-learning
models are typically black-boxes, they are difficult to diagnose and adjust when
failures occur. Thus, models which can better explain their decision-making
process are easier to verify, debug, and make safer. Our library enables users
to analyze the explainability of different model architectures by visualizing the
node attention scores of a graph learning model for a given input. The workflow
of this use case is shown in Algorithm 5. First, using a pre-trained graph
learning model, we run inference on a dataset and record the model’s spatial and
temporal attention scores for each sequence to a CSV file. Then, we visualize the
node attention scores for each scene-graph and color code the nodes according
to their attention score. For a given graph, the nodes with higher attention
scores had a more significant impact on the decision made by the model.
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Algorithm 5: Use Case 5 - Explainability analysis of scene-graph risk
assessment

1 Input: A sequence of images from a driving video clip I,
trained model m.

2 Output: Risk assessment result Ŷ , node attention scores αt

and temporal attention score βt for each graph in G.
3 def SEQ2VEC ATTN(G):
4 hG, α← { }, { }
5 for Gt in G do
6 hGt

, αt ← Spatial Model(Gt) // αt from SAGPool layer

7 end
8 Z, β ← Temporal Model(hG) // β from LSTM-attn layer

9 ŷ0, ŷ1 ← Activation(MLP(Z))
10 if ŷ1 ≥ ŷ0 then
11 return 1, α, β
12 else if ŷ0 > ŷ1 then
13 return 0, α, β

14 def GET ATTENTION SCORES(I):
15 G← EXTRACT SEQ(I)

16 Ŷ , α, β ← SEQ2VEC ATTN(G)

17 return Ŷ , α, β

18 Ŷ , α, β ← GET ATTENTION SCORES(I)

5. Experiments

In this section, we present results from running each use case presented in
Section 4 as well as details on the datasets and metrics used to evaluate each
model.

5.1. Dataset Preparation

For experiments, we prepared two types of driving datasets: (i) synthesized
lane-changing datasets (271-syn and 1043-syn), and (ii) typical real-world driv-
ing datasets (571-honda and 1361-honda). We labeled all of the datasets using
our annotator tool as described in Section 3.1. More details on the datasets
as well as the labeling process can be found in [46]. We randomly split each
dataset into a training set and a testing set by the ratio 7:3 such that the split
is stratified, i.e., the proportion of risky to safe lane change clips in the training
and testing sets is the same. The models are first trained on the training set
before being evaluated on the testing set. The final score of a model on a dataset
is computed by averaging over the testing set scores for five different stratified
train-test splits.
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5.2. Model Configuration

In our experiments, we use two graph learning architectures denoted MRGCN
and MRGIN. Both models consist of the following structure: two graph convo-
lution layers of size 64, one SAGPooling layer with 0.5 pooling ratio, one add
readout layer, and one problem-specific temporal model as defined in Figure 5.
The two architectures only differ in the way successive graph convolutions are
processed, as discussed in Section 3.4.1. As for the baselines, we evaluate the
ResNet-50 CNN classifier and the CNN+LSTM classifier in our experiments.
All models were evaluated using 5-fold cross-validation with the average test
performance over the five folds presented as the final result.

5.3. Use Case 1 Evaluation: Scene-Graph Extraction

In Figure 7, we show an example where two scene graphs are extracted from
the same input image with different relation extraction settings. The graph
at the bottom contains relations between all pairs of vehicles in the scene; for
each pair of vehicles, if the two vehicles are within some distance threshold, the
distance and direction relations are constructed. The graph at the top left is
similar, but it only contains relations between the ego vehicle and each other
vehicle. This figure shows one example of the ways that our tool enables flexible
graph construction for different applications. A demonstration of our visualizer
tool is shown in Figure 8. As shown, our visualizer allows the user to inspect
how objects detected in the input image translate to the objects and relations
in the scene-graph.

Input Image Object Detection

Extract relations 

between all vehicles

Extract relations 

only with ego car

Figure 7: Demonstration of Scene-Graph extraction with two different relation extraction
settings. Zoom in for details.

5.4. Use Case 2 Evaluation: Subjective Risk Assessment

Here, we demonstrate how roadscene2vec can be used to train and eval-
uate several models for the subjective risk assessment use case. We used clas-
sification accuracy and the Area Under the Curve (AUC) [8] of the Receiver
Operating Characteristic (ROC) to score the models. AUC, sometimes referred
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Figure 8: A demonstration of our scene-graph visualization tool that enables the user to
inspect: (i) an original input image, (ii) the object detection results, (iii) the birds-eye view
projection of the image, and (iv) the resultant scene-graph.

to as a balanced accuracy measure [34], measures the probability that a binary
classifier ranks a positive sample more highly than a random negative sam-
ple. This is a more balanced measure for measuring accuracy, especially with
imbalanced datasets (i.e., 271-syn, 1043-syn, 571-honda).

Table 2 shows a comparison between MRGCN, MRGIN, ResNet-50, and
CNN+LSTM [48] models for driving scene risk assessment. The results show
that the MRGCN based approach consistently outperforms the other mod-
els across all the datasets in terms of both classification accuracy and AUC.
We found that the performance difference between the scene-graph based ap-
proaches and the CNN-based approaches increased when the training datasets
were smaller, indicated that the graph-based methods could likely learn a good
representation with less data.

Metric Dataset MRGCN MRGIN ResNet-50 CNN+LSTM [48]

Accuracy

271-syn 0.9320 0.8561 0.6938 0.8033
1043-syn 0.9580 0.8784 0.9053 0.7742

571-honda 0.8710 0.8310 0.7689 0.6041
1361-honda 0.8655 0.7245 0.6839 0.7158

AUC

271-syn 0.9620 0.9437 0.7371 0.8394
1043-syn 0.9780 0.9591 0.9616 0.8221

571-honda 0.9105 0.8903 0.8343 0.6670
1361-honda 0.9124 0.8164 0.7340 0.7560

Table 2: Risk assessment result for MRGCN, MRGIN, ResNet-50, and CNN+LSTM.
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Metric Dataset MRGCN MRGIN ResNet-50 CNN+LSTM [48]

Accuracy
271-syn 0.8812 0.8028 0.7039 0.7184
1043-syn 0.9095 0.7803 0.8080 0.8029

571-honda 0.6922 0.7230 0.7340 0.5606

AUC
271-syn 0.9457 0.8724 0.7564 0.7607
1043-syn 0.9477 0.8826 0.9026 0.8493

571-honda 0.7775 0.7844 0.7802 0.5871

MCC
271-syn 0.5145 0.3046 0.3320 0.1474
1043-syn 0.5385 0.2852 0.4602 0.2436

571-honda 0.2142 0.1908 0.3547 0.1347

Table 3: Collision prediction accuracy, AUC, and MCC for different models in road-
scene2vec.

5.5. Use Case 3 Evaluation: Collision Prediction

Next, we evaluated the models in roadscene2vec at collision prediction us-
ing classification accuracy, AUC, and Matthews Correlation Coefficient (MCC)
[10]. MCC is considered a balanced performance measure for binary classifica-
tion, even on datasets with significant class imbalances. The MCC score outputs
a value between -1.0 and 1.0, where 1.0 corresponds to a perfect classifier, 0.0 to
a random classifier, and -1.0 to an always incorrect classifier. The results from
our evaluation are shown in Table 3.

Once again, MRGCN outperforms the other models on the synthetic datasets.
However, on the 571-honda dataset, the ResNet-50 model outperforms MRGCN
across all metrics. Upon deeper inspection of the results, we found that the
ResNet-50 model had a higher FNR than the MRGCN and a lower FPR than
the MRGCN, suggesting that the ResNet-50 model is less sensitive than the
MRGCN. Given that collision prediction is a safety-critical application, this
behavior may not necessarily be desirable; however, decision boundary tuning
could be used to fine-tune the sensitivity for the final application’s requirements.

On both Use Case 2 and 3, MRGIN underperforms MRGCN, likely because
MRGCN is a more general framework while MRGIN is designed to perform
well at graph topology analysis problems, such as graph isomorphism testing.
MRGIN may outperform MRGCN on different problem formulations or graph
construction formulations if they play to these strengths of MRGIN.

5.6. Use Case 4 Evaluation: Transfer Learning

Here, we demonstrate how roadscene2vec can be used to evaluate each
model’s ability to transfer the knowledge learned from simulated datasets to
real-world datasets. As part of this use case, roadscene2vec uses the model
weights and parameters learned from training on the simulated dataset (271-syn
or 1043-syn in this case) directly for testing on the real-world driving dataset
(571-honda) with no domain adaptation steps. We show the results of this
evaluation for the MRGCN, ResNet-50, and CNN+LSTM models in Table 4.

As expected, the performance of all models degrades when tested on 571-
honda dataset. However, as Table 4 shows, the accuracy of the MRGCN only
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drops by 3.5% and 6.5% when the model is trained on 271-syn and 1043-syn,
respectively, while the CNN+LSTM’s performance drops by 27.9% and 17.3%,
respectively. Furthermore, the MRGCN achieves a higher accuracy score than
the CNN+LSTM when transferring from the smaller 271-syn dataset, once
again indicating that scene-graph models can better model the problem even
when trained on smaller amounts of data. The ResNet-50 model performs
worst and classifies most of the sequences as risky, resulting in an accuracy
score nearly equivalent to the proportion of risky sequences in the 571-honda
dataset ( 17.25%). These results suggest that the scene-graph models can trans-
fer knowledge more effectively than the CNN-based models.

Experiment Model Original
Acc.

Transfer Acc.

271-syn to 571-honda
ResNet-50 0.7039 0.1899 (-0.514)
CNN+LSTM [48] 0.8033 0.5244 (-0.279)
MRGCN 0.9040 0.8690 (-0.035)

1043-syn to 571-honda
ResNet-50 0.8080 0.1725 (-0.636)
CNN+LSTM [48] 0.7742 0.6010 (-0.173)
MRGCN 0.9520 0.8870 (-0.065)

Table 4: The results of comparing transferability between MRGCN, ResNet-50, and
CNN+LSTM [48]. In this experiment, we trained each model on both the 271-syn dataset
and 1043-syn dataset. Then we evaluated the accuracy of the trained model on both original
dataset and 571-honda dataset without any domain adaptation.

5.7. Use Case 5 Evaluation: Explainability Analysis

To demonstrate roadscene2vec’s tools for evaluating explainability, we
run our included explainability analysis tool on our MRGCN model trained for
risk assessment on the 271-syn dataset. The result from analyzing one of the
sequences from the dataset is shown in Figure 9. As shown, the attention scores
are highest on the nodes which present the highest degree of risk. Additionally,
the graph with the highest attention score for the other vehicle is also the graph
corresponding to the collision with the other vehicle.

6. Discussion

6.1. Practicality

Although roadscene2vec is intended to be a tool that benefits the research
community, its practicality and carryover to real-world applications are equally
important. As shown with Use Case 4, roadscene2vec enables researchers to
directly evaluate the ability of models trained on synthetic data to transfer their
knowledge to real-world driving scenes. Many research papers often overlook
this critical problem, leading to a disconnect between simulated trials and real-
world performance. Our tool better enables the study of this crucial problem
area and allows researchers to analyze the real-world practicality of various
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Figure 9: A demonstration of how Use Case 5 enables explainability analysis. For this driving
sequence, it can be clearly seen how the node attention scores shift to give higher weight to
the approaching vehicle as its distance to the ego car reduces.

graph-based methodologies. Furthermore, we show that roadscene2vec is
directly compatible with both the real-world honda driving dataset [32] as well
as the popular open-source driving simulator, CARLA [11], making our tool
useful for a wide range of potential AV applications.

6.2. Limitations and Future Work

Although roadscene2vec provides a suite of tools for training and evaluat-
ing both scene-graph-based and CNN-based models, there are some limitations
to its capabilities. For example, roadscene2vec currently only supports input
data in the format of ground-truth data from the CARLA simulator or image
data from a forward-facing camera; it currently does not support radar, lidar,
or multi-camera data. We selected image data and CARLA data as the pri-
mary input modalities because these data types are the ones most used by AV
researchers currently. Although radar and lidar data are useful and well-studied
in specific applications such as localization and sensor fusion, most AV research
papers exploring perception and control methodologies use camera-based in-
puts. However, this limitation can be overcome by implementing preprocessors
for extracting (or fusing) scene-graphs from these different modalities. Thus,
roadscene2vec does not currently support multiple sensing modalities but
could support them as part of future work. Furthermore, our tool does not
implement more than a few common types of perception algorithms and use
cases. However, our tool is designed to be modular and re-configurable to sup-
port custom models and problem formulations. We expect that researchers will
design custom architectures and models for the various well-studied problems
in the AV domain and provide instructions in our repository for integrating the
custom models with roadscene2vec’s workflow. Thus, we leave the study of
other AV applications and model architectures as future work. We also wel-
come outside contributions to our open-source tool to improve its utility for the
research community further.
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7. Conclusion

It is clear from current research as well as the examples shown in this paper
that scene-graph representations of road scenes can be beneficial for a wide range
of AV applications. In this paper, we introduced and demonstrated our tool for
exploring and studying the applications of road scene-graphs, named road-
scene2vec. We showed that our re-configurable graph-construction method-
ology enables the study of different graph layouts for various problems. We
also demonstrated performance evaluations for conventional CNN architectures
and graph-based models for two common AV perception use cases: risk assess-
ment and collision prediction. Furthermore, we showed how our tool facilitates
studying the transferability and explainability of graph-based AV models for
both synthetic and real-world data. We believe our open-source tool fills a
significant gap in the research community and will enable deeper study of the
applicability and practicality of graph-based solutions for AV problems.
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