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We present results related to a famous conjecture of Enrico De Giorgi for a special class of

bounded monotone solutions, called layer solutions, to nonlinear equations of the form

−∆u = f(u) in Rn

and

(−∆)su = f(u) in Rn,

where (−∆)s denotes the fractional Laplace operator with fractional exponent s ∈ (0, 1). Here,

we assume that f : R → R is at least of class C1. We begin by defining the fractional Laplace

operator, and prove many of its fundamental properties. We then present the extension problem

in Rn+1
+ := {(x, y) ∈ Rn+1 : x ∈ Rn, y > 0} for the operator (−∆)s introduced by Caffarelli

and Silvestre in [13] and develop a fundamental solution and Poisson kernel for (−∆)s in Rn+1
+ .

Subsequently, we prove De Giorgi’s conjecture for layer solutions to the first equation above in

dimensions n ≤ 3. Precisely, we show that layer solutions are necessarily one-dimensional. We

then turn our attention to the fractional De Giorgi conjecture, and present the fractional versions

of the results obtained in the classical case (i.e. similar results for the second equation above).

To supplement, we discuss some Pohozaev-type monotonicity formulae for the operators ∆ and

(−∆)s, along with some closely related problems. We close with a brief discussion of some open

problems and topics of further interest to the author.
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CHAPTER 1: INTRODUCTION

Perhaps the most studied operator in partial differential equations (PDE) is the Laplacian operator,

given by

∆ :=
n∑
j=1

∂2

∂x2
j

. (1.1)

The Laplacian is the prototype representative of a class of partial differential operators, termed

(uniformly) elliptic operators1, which are characterized by their tendency to revert the value of

a function at a point to its mean value over a region. Equations involving elliptic operators (i.e.

elliptic PDE) commonly arise as steady state (time independent) counterparts of hyperbolic and

parabolic PDE; their solutions tending to possess favorable regularity properties. Of particular

interest in both the theory and application of PDE are solutions to Laplace’s equation

−∆u = 0. (1.2)

Laplace’s equation is a second-order elliptic PDE, first studied by Pierre-Simon Laplace in the

18th century. It occurs frequently in the applied sciences, specifically in the study of steady state

phenomena. For example, Laplace’s equation may be viewed as the steady-state counterpart to the

heat equation

ut −∆u = 0. (1.3)

That is to say, after setting ut = 0 in the heat equation we obtain Laplace’s equation. Physically,

this corresponds to the heat distribution in, say, a rod at infinite time, u = u(x,+∞). Assuming

no heat is being supplied to the rod, we should expect the heat distribution in the rod to reach an

equilibrium or steady-state. Symbolically, we may then write

ut(x, t)→ 0 as t→ +∞
1For the definition, see the appendix, Chapter B.
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and obtain (1.2) in the limit.

Solutions to Laplace’s equation are called harmonic functions, and their study is important to

branches of physics such as electrostatics, gravitation, and fluid dynamics. Harmonic functions

are also of interest in pure mathematics, not only in the study of PDE, but also fields ranging from

complex analysis, harmonic analysis, and differential geometry. More generally, one may consider

Poisson’s equation

−∆u = f, (1.4)

which plays a role in conservative fields (i.e. electrical, magnetic, gravitational, ... ), where the

vector field is derived from the gradient of a potential. We briefly note that Laplace’s equation is

merely the Poisson equation when we set f ≡ 0.

Recall from introductory analysis that, for a twice continuously differentiable function u ∈

C2(a, b), a second-order Taylor expansion gives

− u′′(x) = lim
y→0

2u(x)− u(x+ y)− u(x− y)

y2
(1.5)

for each x ∈ (a, b) ⊆ R. The right-hand side of equation (1.5) is known as a symmetric difference

quotient of order two. Consider now the spherical surface operator and solid averaging operator

defined by

Myu(x) =
u(x+ y) + u(x− y)

2
(1.6)

Ayu(x) =
1

2y

ˆ x+y

x−y
u(t) dt, (1.7)

respectively. We have

−u′′(x) = 2 lim
y→0

u(x)−Myu(x)

y2
(1.8)

= 6 lim
y→0

u(x)−Ayu(x)

y2
, (1.9)
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where the second equality is obtained from the first after applying L’Hospital’s rule. After making

the necessary adjustments in higher dimensions, we obtain the Blaschke-Privalov Laplacian.

Proposition 1.0.1 (Blaschke-Privalov Laplacian). Let Ω ⊂ Rn be open. For any u ∈ C2(Ω) and

x ∈ Ω

−∆u(x) = 2n lim
R→0

u(x)−MRu(x)

R2
(1.10)

= 2(n+ 2) lim
R→0

u(x)−ARu(x)

R2
(1.11)

where the Laplacian operator ∆ is defined by (1.1), and the spherical surface and solid averaging

operators in Rn are defined by

MRu(x) =
1

σn−1Rn−1

ˆ
∂BR(x)

u(y) dSn−1(y) (1.12)

ARu(x) =
1

ωnRn

ˆ
BR(x)

u(y) dy, (1.13)

where BR(x) denotes the ball of radius R centered at x ∈ Rn and dSn−1(y) denotes the n − 1-

dimensional spherical surface measure2 on Rn.

Remark 1.0.1. In the above proposition, σn−1 and ωn denote the Lebesgue measure3 of the unit

sphere and unit ball in Rn, respectively. Moreover, setting n = 1 yields (1.8) and (1.9). We also

observe, as a bit of foreshadowing, that we can write (1.10) more suggestively as

−∆u(x) =
(n+ 2)Γ(n

2
+ 1)

π
n
2

lim
R→0+

ˆ
Rn

[2u(x)−u(x+y)−u(x−y)]
1

Rn+2
χB(0,R)(y) dy, (1.14)

where, as usual, χE denotes the characteristic function of a set E ⊆ Rn.

In view of Proposition 1.0.1, we see that a function being harmonic is deeply related to the

action of comparing the function value at a point with the surrounding values and reverting to the
2We often times will write dSn−1 in place of dSn−1(y) whenever there is no confusion regarding the variable of

integration. Furthermore, on a general domain Ω ⊂ Rn, we write dS to represent the measure on ∂Ω.
3Throughout this project, we will work almost exclusively with the Lebesgue measure on Rn. In accordance, we

will henceforth say “measure” when referring to the Lebesgue measure unless the distinction is necessary.
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averaged values in a neighborhood of that point. That is, the idea behind the integral representa-

tions (1.10) and (1.11) is that the Laplacian tries to model an elastic reaction: it aims to level out

differences in function values in order to make the function as uniform as possible. Precisely, we

see that, for a harmonic function u defined on a domain Ω,

u(x) =MRu(x) = ARu(x) (1.15)

for any ball of radius R > 0 such that BR(x) ⊂⊂ Ω. That is to say that the value of a harmonic

function at a point in its domain is identically equal to its average over any ball (or boundary of any

ball) compactly contained in its domain. This tendency to revert to the surrounding mean suggests

that harmonic equations or, more generally, equations involving elliptic operators, possess some

kind of regularity properties that prevent the solutions from oscillating too wildly.

From Proposition 1.0.1, we also see that the Laplacian is the infinitesimal limit of integral

operators. In what follows, we discuss another integral operator, the fractional Laplacian, from

which we recover the Laplacian in an appropriate limit sharing a similar property of averaging

function values. Unlike the case of the Laplacian, such averaging procedure will not be limited to

a small neighborhood of a given point in the domain, but will encompass all the possible values of

the function by assigning weights to points corresponding to their proximity to the point of interest

via an integral kernel. Due to this global nature, we say that the fractional Laplacian is a nonlocal

operator.

We will first acquaint the reader with some basic facts and definitions necessary to study the

fractional Laplacian. Subsequently, we will provide two definitions of the fractional Laplacian

and prove their equivalence. This will be followed by a brief discussion of some fundamental

facts regarding the fractional Laplacian. A lot of attention will be given to the subsequent section,

namely, the fractional Laplacian as the solution to the harmonic extension problem in dimension

Rn+1+a, first recognized by Caffarelli and Silvestre in their pioneering paper (see [13]). We will

then focus on a famous conjecture of Enrico De Giorgi regarding a particular class of solutions
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called layer solutions to the nonlinear problem

−∆u = f(u) in Rn,

where f ∈ C1(R), which is resolved aside from a mild limit assumption imposed in dimensions

4 ≤ n ≤ 8 by Savin in [49]. The focus of this section will be to provide the reader with an

understanding of the work of Ambrosio and Cabré in [2] for dimension n = 3, inspired by that of

Gui and Ghoussoub in [31] for dimension n = 2. We further aim to develop the necessary tools for

studying the problem in the nonlocal case using the extension problem of Caffarelli and Silvestre.

Due to the deep connection between De Giorgi’s conjecture, the theory of phase transitions, and

minimal surfaces, we provide a brief discussion of minimal surface problems in the framework

of De Giorgi, as well as motivate with simple examples from the theory of phase transitions. As

supplementary material, we provide a short section on an estimate and monotonicity formula of

Modica, proved in [41] and [43], respectively.

In the nonlocal case, we prove nonlocal analogues to the local results by following the work of

Cabré and Sire ( [9], [10]), as well the work of Cabré and Cinti ( [7], [8]) and Dipierro et al. ( [18]).

We also discuss the difficulties that arise when transitioning from local to nonlocal problems via

the extension problem. We conclude the study of the nonlocal case by considering a nonlocal

Modica-type estimate and nonlocal monotonicity formula, along with a brief discussion of recent

results, open problems, and subjects of interest to the author for future study.

1.1 Fractional Preliminaries

Let Ω ⊂ Rn be a general, possibly non-smooth, open set in Rn. Just as the Sobolev spacesW k,p(Ω)

are needed to establish appropriate regularity of solutions u for a given PDE, our forthcoming

considerations of the fractional Laplacian (−∆)s require us to define a fractional counterpart, that

is, the fractional Sobolev spaces W s,p(Ω) for s ∈ (0, 1). For any s ∈ (0, 1) and any p ∈ [1,∞),

5



we define the fractional Sobolev Space W s,p(Ω) as follows:

W s,p(Ω) :=

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|

n
p

+s
∈ Lp(Ω× Ω)

}
. (1.16)

The space W s,p is an intermediary Banach space between Lp(Ω) and W 1,p(Ω), endowed with the

norm

‖u‖W s,p(Ω) :=

( ˆ
Ω

|u|p dx+

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

) 1
p

, (1.17)

where the term

[u]W s,p(Ω) :=

( ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

) 1
p

is called the Gagliardo seminorm of u.

We present some fundamental properties of the fractional Sobolev spaces W s,p(Ω). The results

will be stated without proof, though proofs can be found in [21], [46], and [48]. For s ∈ (0, 1), the

space W s′,p(Ω) is continuously embedded4 in W s,p(Ω) when s ≤ s′.

Proposition 1.1.1. Let p ∈ [1,∞) and 0 < s ≤ s′ < 1. Let Ω be an open set in Rn and u : Ω→ R

be a measurable function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W s′,p(Ω)

for some suitable positive constant C = C(n, s, p) ≥ 1. In particular,

W s′,p(Ω) ⊆ W s,p(Ω).

With some additional regularity assumptions on the ∂Ω (namely, that Ω ⊂ Rn is open of class

C0,1 with bounded boundary), one can prove that W 1,p(Ω) is continuously embedded in W s,p(Ω).

4Recall that a Banach space U is continuously embedded in a Banach space V if U ⊆ V and ‖v‖V ≤ C‖u‖U for
all u ∈ U and v ∈ V and some positive constant C.
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Proposition 1.1.2. Let p ∈ [0,∞) and s ∈ (0, 1). Let Ω be an open set in Rn of class C0,1 with

bounded boundary and u : Ω→ R be a measurable function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W 1,p(Ω)

for some suitable constant C = C(n, s, p) ≥ 1. In particular,

W 1,p(Ω) ⊆ W s,p(Ω).

Remark 1.1.1. It should be pointed out that the definition of the fractional Sobolev space W s,p(Ω)

can be extended to the case s ≥ 1 with some care (see [46]), however, this is not our focus.

We thereby see that there is a direct relationship between the fractional and classical Sobolev

spaces via continuous embedding. In line with the classic case of s being an integer, we obtain the

subsequent approximation result.

Proposition 1.1.3. For any s ∈ (0, 1), the space C∞0 (Rn) of smooth functions with compact sup-

port is dense in W s,p(Rn).

Remark 1.1.2. More generally, Proposition 1.1.3 holds for all s > 0.

Let W s,p
0 (Rn) denote the closure of C∞0 (Rn) in the norm ‖·‖W s,p(Ω) defined by (1.17). As a

consequence of Proposition 1.1.3, we have

W s,p
0 (Rn) = W s,p(Rn). (1.18)

However, for a general domain Ω ⊂ Rn these spaces do not coincide. That is to say that, in general,

C∞0 (Ω) is not dense inW s,p(Ω). Furthermore, the same conclusions stated in Proposition 1.1.1 and

Proposition 1.1.2 hold for the spaces W s,p
0 (Ω).

7



1.2 Defining the Fractional Laplacian

We are finally ready to introduce the fractional Laplace operator (−∆)s. We will first present

the reader with a couple equivalent definitions of the fractional Laplacian. This is by no means

exhaustive, and a more complete list of definitions can be found in [1] and [38]. The definitions to

be considered are as follows:

1. The fractional Laplacian as a singular integral operator.

2. The fractional Laplacian via the Fourier transform on Rn.

The equivalence of the above characterizations will be proven in full detail, however, we first

motivate the material that follows.

In the applied sciences, it is often helpful to consider fractional derivatives of functions. Per-

haps the most prominent way to define such fractional derivatives is founded on the notion of

Marcel Riesz’ potential of a function. Assume n ≥ 3. In potential theory, the Newtonian potential

of a function f ∈ S (Rn) is given by

I2(f)(x) =
1

4π
n
2

Γ
(n− 2

2

) ˆ
Rn

f(y)

|x− y|n−2
dy.

Recognizing the convolution kernel 1

4π
n
2

Γ
(
n−2

2
) 1
|x|n−2 is simply the fundamental solution for Laplace’s

equation

Ψ(x) =
1

(n− 2)σn−1

1

|x|n−2
,

and recalling the identity of Gauss-Green, we observe that for any f ∈ S (Rn) one has

I2(−∆f) = f.

That is, the Newtonian potential is the inverse of the Laplacian operator: I2 = (−∆)−1. From this

observation, we introduce a generalization of the Newtonian potential.

8



Definition 1.2.1 (Riesz’ Potentials). For any n ∈ N, let 0 < α < n. The Riesz potential of order

α is the operator whose action on a function f ∈ S (Rn) is given by:

Iα(f)(x) =
Γ
(
n−α

2

)
π
n
2 2αΓ

(
α
2

) ˆ
Rn

f(y)

|x− y|n−α
dy.

It can be shown that Iα ∈ C∞(Rn) for any f ∈ S (Rn). Moreover, the operator Iα has been

defined so that the normalization constant reduces to that of I2 when setting α = 2 in order to

guarantee the validity of the following “fundamental theorem of fractional calculus.”

Theorem 1.2.1. For any f ∈ S (Rn), one has in S ′(Rn)

Iα(−∆)
α
2 f = (−∆)

α
2 Iαf = f.

Of course, we must specify what is meant by the fractional operator (−∆)
α
2 . This is done most

naturally by defining the action of (−∆)
α
2 on the Fourier transform:

F ((−∆)
α
2 u) = (2π| · |)αF (u) for u ∈ S ′(Rn).

In other words, the above equation shows that the operator Iα inverts the fractional powers 0 <

α < n of the Laplacian: Iα = (−∆)−
α
2 .

Since we are focused on the fractional Laplacian (−∆)s with s residing in (0, 1) we let s = α
2

with 0 < α < 2 in the above expressions and the remainder of this project. Though such an

operator has already been formally introduced, the prior definition has a major drawback for our

purposes. Namely, it is not easy to analyze a given function by prescribing its Fourier transform.

For this reason, we introduce an alternative definition of the fractional Laplacian, equivalent to the

previous. This definition is helpful since it is more directly connected to the symmetric difference

quotient of order two presented in the introduction, thereby allowing its probabilistic interpretation

to be highlighted (see [30] for more on this). We will, however, return to the definition of the

fractional Laplacian as determined by its action on the Fourier transform to tie up loose ends and
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introduce useful results.

1.2.1 The Fractional Laplacian as a Singular Integral Operator

Let us first specify what is meant by a singular integral operator. A singular integral operator is an

integral operator with a singular kernel, each having its only singularities at a finite point, called

the origin, and at infinity. An excellent resource on this topic is Elias M. Stein’s text [58].

Having the above definition at hand, we may define the fractional Laplacian as a singular

integral operator.

Definition 1.2.2. Let u ∈ S (Rn) and s ∈ (0, 1). The fractional Laplacian operator is defined as a

singular integral operator by

(−∆)su(x) := C(n, s)P.V.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy. (1.19)

Remark 1.2.1. The notation “P.V.” in (1.19) stands for “in the Principal Value sense,” that is

(−∆)su(x) = C(n, s)P.V.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy

= C(n, s) lim
ε↓0

ˆ
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy. (1.20)

The constant C(n, s) is a dimensional constant that depends only on n and s, and is given precisely

by

C(n, s) =

(ˆ
Rn

1− cos ζ1

|ζ|n+2s
dζ

)−1

. (1.21)

In fact, for 0 < s < 1, we have

C(n, s) =
s22sΓ(n+2s

2
)

π
n
2 Γ(1− s)

(see (5.10) in [30]).

We further note the constant C(n, s) plays plays no essential role for fixed s ∈ (0, 1). As such,

unless stated otherwise, we will take C(n, s) ≡ 1. Furthermore, we will drop the symbol P.V.
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in computations with the convention that integrals are being taken in the P.V. sense unless this

distinction is necessary.

In the spirit of the opening remarks, we show that the singular integral in (1.19) can be written

as a weighted second order differential quotient much like in the classical case. The proofs of the

following facts have been adapted from [46].

Lemma 1.2.1. Let s ∈ (0, 1) and let (−∆)s be the fractional Laplacian operator defined by (1.19).

Then, for any u ∈ S (Rn),

(−∆)su(x) = −1

2

ˆ
Rn

u(x+ y)− u(x− y)− 2u(x)

|y|n+2s
dy (1.22)

for each x ∈ Rn.

Remark 1.2.2. The integral in (1.22) is not in the P.V. sense.

Proof. The equivalence of definitions (1.19) and (1.22) is the result of a standard change of vari-

ables argument. Set z = y − x and observe that

(−∆)su(x) = −
ˆ
Rn

u(y)− u(x)

|x− y|n+2s
dy

= −
ˆ
Rn

u(x+ z)− u(x)

|z|n+2s
dz

Substituting z′ = −z above, we have

ˆ
Rn

u(x+ z)− u(x)

|z|n+2s
dz =

ˆ
Rn

u(x− z′)− u(x)

|z′|n+2s
dz′

11



and so after relabeling z′ as z

2

ˆ
Rn

u(x+ z)− u(x)

|z|n+2s
dz

=

ˆ
Rn

u(x+ z)− u(x)

|z|n+2s
dz +

ˆ
Rn

u(x− z)− u(x)

|z|n+2s
dz

=

ˆ
Rn

u(x+ z)− u(x− z)− 2u(x)

|z|n+2s
dz.

Therefore, if we rename z as y in the above expression, we can write the fractional Laplacian

operator in (1.19) as

(−∆)su(x) = −1

2
P.V.

ˆ
Rn

u(x+ y)− u(x− y)− 2u(x)

|y|n+2s
dy,

where the integral is being taken in the P.V. sense due to the singularity at the origin. By the above

representation, we may remove the singularity at the origin. Indeed, for any smooth function u, a

second order Taylor expansion yields

u(x+ y)− u(x− y)− 2u(x)

|y|n+2s
≤ ‖D

2u‖L∞
|y|n+2s−2

,

which is integrable near zero for any fixed s ∈ (0, 1). Therefore, since u ∈ S (Rn) we may get rid

of the P.V. and write (1.22).

Remark 1.2.3. As mentioned earlier, a primary advantage of the expression (1.22) is in the fact

that the probabilistic interpretation of the fractional Laplacian (1.19) becomes apparent. Moreover,

(1.22) may sometimes be used to simplify computations, allowing one to disregard the P.V. symbol

in (1.19).

We point out that the fractional Laplacian is well-defined for every u ∈ C2(Rn) ∩ L∞(Rn),

which can be shown by estimating the integral (1.19) over Bε(x), for ε > 0 small enough, and

its complement in Rn and applying Lemma 1.2.1. Similarly, one may show (−∆)su ∈ L2(Rn)

whenever u ∈ S (Rn).
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Let 0 < s < 1. We denote by Ls(Rn) the space of measurable functions u : Rn → R for

which the norm

‖u‖Ls(Rn) =

ˆ
Rn

|u(x)|
1 + |x|n+2s

dx

is finite. In particular, we have the inclusion S (Rn) ↪→ Ls(Rn)5, where the symbol “↪→” denotes

continuous embedding. Furthermore, if u ∈ C2(Rn) ∩ Ls(Rn), we can define (−∆)su(x) as in

(1.19) for every x ∈ Rn.

1.2.2 The Fractional Laplacian Via the Fourier Transform

We now introduce an alternative definition of the spaceHs(Rn) := W s,2(Rn) by way of the Fourier

transform6. The proofs in this section have been adapted from [46]. Define

Ĥs(Rn) = {u ∈ L2(Rn) :

ˆ
Rn

(1 + |ξ|2)s|Fu(ξ)|2 dξ < +∞}. (1.23)

We show the space Ĥs(Rn) is equivalent to the space defined earlier in (1.16). Before we do so,

we will prove an important result. Returning to our initial definition of the fractional Laplacian

given in the opening of this chapter, we observe that the fractional Laplacian (−∆)s can be viewed

as a pseudo-differential operator of symbol (2π|ξ|)2s. In short, pseudo-differential operators are

defined by their action on functions specified by the following formula:

Pu(x) =

ˆ
Rn
e2πiξ·xp(x, ξ)û(ξ) dξ.

Here, the function p(x, ξ) is known as a symbol. In the case of the fractional Laplacian, we see

that p(x, ξ) = (2π|ξ|)2s.

5Even more, we have the inclusion Lp(Rn) ↪→ Ls(Rn) for each 1 ≤ p ≤ ∞.
6We take

F(f)(ξ) :=

ˆ
Rn

f(x)e−2πiξ·x dx

as our definition of the Fourier transform. Here, we assume f ∈ L1(Rn), of course.
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Proposition 1.2.1. Let s ∈ (0, 1) and let (−∆)s : S (Rn) → L2(Rn) be the fractional Laplacian

operator defined by (1.19). Then, for any u ∈ S (Rn),

(−∆)su = F−1((2π|ξ|)2s(Fu)) (1.24)

for all ξ ∈ Rn.

Proof. In view of Lemma 1.2.1, we may use the definition via the weighted second order differen-

tial quotient in (1.22). We denote by Lu the integral in (1.22), that is

Lu = −1

2

ˆ
Rn

u(x+ y)− u(x− y)− 2u(x)

|y|n+2s
dy.

We note that L is a linear operator and we are looking for its symbol, that is, a function p :

Rn → R such that

Lu = F−1(p ·Fu). (1.25)

We want to prove that

p(ξ) = (2π|ξ|)2s, (1.26)

where we denote by ξ the frequency variable. Applying a second order Taylor expansion, we

observe that

|u(x+ y) + u(x− y)− 2u(x)|
|y|n+2s

≤

C
(
χB1(y)|y|2−n−2s sup

B1(x)

|D2u|+ χRn\B1(y)|y|−n−2s|u(x+ y) + u(x− y)− 2u(x)|
)
∈ L1(R2n)

for some constant C. Consequently, by Fubini’s theorem, we can exchange the integral in y with
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the Fourier transform in x. Thus, we apply the Fourier transform in the variable x and obtain

p(ξ)(Fu)(ξ) = F (Lu)

= −1

2

ˆ
Rn

F (u(x+ y) + u(x− y)− 2u(x))

|y|n+2s
dy

= −1

2

ˆ
Rn

e2πiξy + e−2πiξy − 2

|y|n+2s
dy(Fu)(ξ)

=

ˆ
Rn

1− cos(2πξ · y)

|y|n+2s
dy(Fu)(ξ). (1.27)

Hence, in order to obtain (1.26), it suffices to show that

ˆ
Rn

1− cos(2πξ · y)

|y|n+2s
dy = (2π|ξ|)2s. (1.28)

First, we observe that, if ζ = (ζ1, . . . , ζn) ∈ Rn, we have

1− cos(ζ1)

|ζ|n+2s
≤ |ζ1|2

|ζ|n+2s
≤ 1

|ζ|n−2+2s

near ζ = 0, which can be seen by applying a Taylor expansion about zero. Thus,

1− cos(ζ1)

|ζ|n+2s
∈ L1(Rn). (1.29)

Now, we consider the function q : Rn → R defined as follows:

q(ξ) =

ˆ
Rn

1− cos(ξ · y)

|y|n+2s
dy.

From (1.29), we see that p is well-defined. Moreover, q is invariant under the rotation ξ 7→ |ξ|e1.

That is

q(ξ) = q(|ξ|e1), (1.30)

where e1 denotes the first direction in Rn. Indeed, when n = 1, we may deduce (1.28) by the fact

that q(−ξ) = q(ξ). When n ≥ 2, we consider a rotation R for which R(|ξ|e1) = ξ and we denote
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by RT its transpose. Then, by substituting y′ = RTy, we obtain

q(ξ) =

ˆ
Rn

1− cos((R(|ξ|e1)) · y)

|y|n+2s
dy

(Since R is self adjoint) =

ˆ
Rn

1− cos
(
(|ξ|e1) · (RTy)

)
|y|n+2s

dy

=

ˆ
Rn

1− cos((|ξ|e1) · y′)
|y|n+2s

dy′

= q(|ξ|e1),

proving (1.30).

As a consequence of (1.29) and (1.30), the substitution ζ = 2π|ξ|y gives that

p(ξ) = p(|ξ|e1)

=

ˆ
Rn

1− cos(2π|ξ|y1)

|y|n+2s
dy

=
1

(2π|ξ|)n

ˆ
Rn

1− cos(ζ1)∣∣∣ ζ
2π|ξ|

∣∣∣n+2s dζ

= C(n, s)−1(2π|ξ|)2s

= (2π|ξ|)2s

We thereby deduce (1.28) and the proof is complete.

Specifically, Proposition 1.2.1 provides us with a direct relationship between the fractional

Laplacian of a suitable function u and its Fourier transform given by (1.24). Moreover, we have

the following:

Proposition 1.2.2. Let s ∈ (0, 1). Then the fractional Sobolev space Hs(Rn) defined in (1.16)

coincides with Ĥs(Rn) defined in (1.23). In particular, for any u ∈ Hs(Rn)

[u]2Hs(Rn) = 2

ˆ
Rn
|ξ|2s|Fu(ξ)|2 dξ.
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Proof. For every fixed y ∈ Rn, by applying the change of variables x = x− y, we get

ˆ
Rn

(ˆ
Rn

|u(x)− u(y)|2

|x− y|n+2s
dx

)
dy =

ˆ
Rn

ˆ
Rn

|u(z + y)− u(y)|2

|z|n+2s
dz dy

=

ˆ
Rn

(ˆ
Rn

∣∣∣∣u(z + y)− u(y)

|z|n2 +2

∣∣∣∣2 dy
)
dz

=

ˆ
Rn

∥∥∥∥u(z + ·)− u(·)
|z|n2 +s

∥∥∥∥2

L2(Rn)

dz

=

ˆ
Rn

∥∥∥∥∥F
(
u(z + ·)− u(·)
|z|n2 +s

)∥∥∥∥∥
2

L2(Rn)

dz,

where we have used Plancherel’s formula. Using (1.28) we obtain

ˆ
Rn

∥∥∥∥∥F
(
u(z + ·)− u(·)
|z|n2 +s

)∥∥∥∥∥
2

L2(Rn)

dz =

ˆ
Rn

ˆ
Rn

|eiξ·z − 1|2

|z|n+2s
|Fu(ξ)|2 dξ dz

= 2

ˆ
Rn

ˆ
Rn

(1− cos(ξ · z))

|z|n+2s
|Fu(ξ)|2 dz dξ

= 2C(n, s)−1

ˆ
Rn
|ξ|2s|Fu(ξ)|2 dξ

= 2

ˆ
Rn
|ξ|2s|Fu(ξ)|2 dξ.

This completes the proof.

In other words, Proposition 1.2.2 establishes the equivalence of the spacesHs(Rn) and Ĥs(Rn),

mirroring the case when s is an integer7. For more on the fractional Sobolev theory and trace theory

for (−∆)s, we encourage the reader to take a look at [46].

1.3 Fundamental Properties of the Fractional Laplacian

Before proceeding, we introduce some elementary yet fundamental properties of the operator

(−∆)s. Many of these facts will be helpful in later computations and the reader should notice

the similarity between the following results and the local analogues for the Laplacian. We will

7See Appendix Chapter A.
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conclude this section, as well as the chapter, by proving that the fractional Laplacian of a suitable

function u converges to u as s ↓ 0 and to −∆u as s ↑ 1. This will tie together the similarities

between the fractional Laplacian and Laplacian operators which we have observed thus far. For

more information on the following material, we recommend [30].

Appealing to Definition 1.2.2, one my easily verify that the fractional Laplacian (1.19) is linear

and translation invariant. Furthermore, from above, (−∆)s is a homogeneous operator of order 2s.

We thereby have the following proposition.

Proposition 1.3.1. For every function u ∈ S (Rn), we have for every h ∈ Rn

(−∆)s(τhu) = τh((−∆)su) (1.31)

and every λ > 0

(−∆)s(δλu) = λ2sδλ((−∆)su), (1.32)

where τh and δλ are the translation and dilation operators by h ∈ Rn and λ > 0, respectively.

Much like the classical Laplacian, we also have invariance with respect to the action of the

orthogonal group on Rn.

Proposition 1.3.2. Let u := u(|x|) be a function with spherical symmetry in C2(Rn) ∩ L∞(Rn).

Then, (−∆)su also has spherical symmetry.

Proof. Let O ∈ O(n), where O(n) denotes the orthogonal group on Rn. Compute (−∆)su(Ox)

directly to find

(−∆)su(Ox) =
1

2

ˆ
Rn

2u(|x|)− u(|x+OTy|)− u(|x−OTy|)
|y|n+2s

dy.
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Applying the change of variable z = OTy, we have

(−∆)su(Ox) =
1

2

ˆ
Rn

2u(|x|)− u(|x+ z|)− u(|x− z|)
|z|n+2s

= (−∆)su(x)

by Lemma 1.2.1.

Moreover, we have the following estimate:

Proposition 1.3.3. Let u ∈ S (Rn). Then, for every x ∈ Rn with |x| > 1, we have

|(−∆)su(x)| ≤ C(u, n, s)|x|−(n+2s), (1.33)

where C(u, n, s) is a dimensional constant depending also on the function u and fractional expo-

nent s.

From Proposition 1.3.3, we may obtain a nontrivial regularity result for (−∆)s:

Corollary 1.3.1. Let u ∈ S (Rn). Then, (−∆)su ∈ C∞(Rn) ∩ L1(Rn).

With the opening of this note in mind, we provide the fractional analogue of the averaging

expression for −∆u(x) in terms of a pointwise limit involving the spherical mean-value operator

MR. Unlike the classical case, our new expression will be provided in terms of an integral. This

integral representation is a result of the nonlocal nature of (−∆)s.

Proposition 1.3.4. Let u ∈ S (Rn). For every 0 < s < 1, one has

(−∆)su(x) = −σn−1

ˆ ∞
0

R−1−2s[MRu(x)− u(x)] dR, (1.34)

with MR denoting the spherical mean-value operator (1.12).

Proof. By (1.10) in Proposition 1.0.1, we see that MRu(x) − u(x) = O(R2) as R → 0+. Thus,

the integrand in right-hand side of the integral (1.34) behaves like R1−2s as R→ 0+. Moreover, at
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infinity the integrand behaves like R−1−2s. We thereby conclude that the integral on the right-hand

side of (1.34) is convergent. By Cavalieri’s principle, we may write

(−∆)su(x) =

ˆ ∞
0

ˆ
∂BR(x)

u(x)− u(y)

Rn+2s
dSn−1(y) dR

=

ˆ ∞
0

1

Rn+2s

ˆ
∂BR(x)

[u(x)− u(y)] dSn−1(y) dR

= −σn−1

ˆ ∞
0

Rn−1

Rn+2s
[MRu(x)− u(x)] dR,

giving the desired conclusion.

The following symmetry property is also useful.

Proposition 1.3.5 (Symmetry Property). Let 0 < s ≤ 1. Then, for any u, v ∈ S (Rn) we have

ˆ
Rn
u(x)(−∆)sv(x) dx =

ˆ
Rn

(−∆)su(x)v(x) dx. (1.35)

Proof. We omit the case s = 1, as it is well known and follows immediately from the integration

by parts formula. Thus, let us focus on the case 0 < s < 1. By Corollary 1.3.1, we know that

̂(−∆)su, ̂(−∆)sv ∈ L1(Rn), so we may use the following formula, valid for any f, g ∈ L1(Rn):

ˆ
Rn
f̂(ξ)g(ξ) dξ =

ˆ
Rn
f(ξ)ĝ(ξ) dξ. (1.36)

By (1.36) and Proposition 1.2.1, we see that

ˆ
Rn

(−∆)su(x)v(x) dx =

ˆ
Rn

(−∆)su(x)F
(
F−1v

)
(x) dx

=

ˆ
Rn

F
(
(−∆)su(ξ)

)
F−1v(ξ) dξ

=

ˆ
Rn
û(ξ)(2π|ξ|)2sF−1v(ξ) dξ
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Applying Proposition 1.2.1 once more, we find

F−1
(
(−∆)sv

)
(ξ) = (2π|ξ|)2sF−1v(ξ).

Using the above and applying (1.36) again, we see

ˆ
Rn

(−∆)su(x)v(x) dx =

ˆ
Rn
û(ξ)F−1

(
(−∆)sv

)
(ξ) dξ

=

ˆ
Rn

F−1(û)(x)(−∆)sv(x) dx

=

ˆ
Rn
u(x)(−∆)sv(x) dx,

as desired. This concludes the proof.

Before moving on, we remark that many of the classical results for the Laplacian can be ex-

tended, with appropriate adjustments, to the fractional Laplacian. In particular, this holds true for

the maximum principles and other related theorems (e.g. Liouville theorem, Harnack inequality).

For more on this, see [30].

1.3.1 The Limit as s ↓ 0 and s ↑ 1

In this opening chapter, we have introduced the fractional Laplacian (−∆)s for s ∈ (0, 1) and

have highlighted its similarity to the more familiar operator, the Laplacian. However, after exam-

ining definition (1.19), the relationship between these two operators is not apparent. By viewing

the fractional Laplacian as a pseudo-differential operator (see Proposition 1.2.1), the relationship

becomes clear.

Theorem 1.3.1. For any u ∈ S (Rn), the following hold:

lim
s→0+

(−∆)su = u, (1.37)

lim
s→1−

(−∆)su = −∆u. (1.38)
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Proof. By Proposition 1.2.1, we see that

(−∆)su(x) = F−1((2π|ξ|)2sF (u))(x) for all x ∈ Rn. (1.39)

Taking the limit in (1.39) as s → 0+ and s → 1− and using the fact that F : S (Rn) → S (Rn)

along with the dominated convergence theorem, we see that

lim
s→0+

(−∆)su(x) = lim
s→0+

F−1((2π|ξ|)2sF (u))(x)

= F−1
(

lim
s→0+

(2π|ξ|)2sF (u)
)

(x)

= F−1(F (u))(x)

= u(x) for each x ∈ Rn (1.40)

and

lim
s→1−

(−∆)su(x) = lim
s→1−

F−1(|ξ|2sF (u))(x)

= F−1
(

lim
s→1−

(2π|ξ|)2sF (u)
)

(x)

= F−1((2π|ξ|)2F (u))(x)

= F−1(F (−∆u))(x)

= −∆u(x) for all x ∈ Rn. (1.41)

This concludes the proof.

Remark 1.3.1. We may suppose instead that u ∈ C∞0 (Rn) and repeat the same proof so that

Theorem 1.3.1 applies to the space C∞0 of test functions also. Using this fact, we may approximate

using test functions to generalize to more abstract spaces have C∞0 (Rn) as a dense subset.

Theorem 1.3.1 shows that, for suitable u, the fractional Laplacian of u converges to the Lapla-

cian of u (or to u itself) in an appropriate limit, establishing a direct connection between the local

and nonlocal operators −∆ and (−∆)s. In the subsequent chapter, we develop yet another con-
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nection between local and nonlocal problems for the Laplacian and fractional Laplacian using an

extension problem developed by Caffarelli and Silvestre in 2007. We later use these results to

prove a famous conjecture of De Giorgi for (−∆)s.
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CHAPTER 2: THE EXTENSION PROBLEM

In the past decade there has been an increased interest in the analysis of nonlocal operators such as

(−∆)s in connection with the applied sciences, analysis, probability, and geometry. Such devel-

opments have been motivated largely by the extension paper published in 2007 by L. Caffarelli

and L. Silvestre (see [13]). In this paper, the authors introduced a method allowing the con-

version of nonlocal problems in Rn into problems involving a particular differential operator in

Rn+1
+ := {(x, y) ∈ Rn+1 : x ∈ Rn, y > 0}. In the present chapter, we summarize many of their

results.

The motivation for realizing the fractional Laplacian as a local operator is as follows: When

dealing with nonlocal operators such as (−∆)s, a major difficulty one encounters stems from the

fact that they do not act on functions like differential operators do. Instead, their action is often

through nonlocal integral formulas such as (1.19). As a result, the tools of differential calculus are

not readily available. It is therefore desirable to have a procedure allowing us to connect nonlocal

problems to local problems, in which the rules of differential calculus are at our disposal.

Before diving head first into the general case (i.e., s ∈ (0, 1)), we consider the particular

case s = 1
2
. To motivate, we note that the fractional Laplacian satisfies the following semigroup

property: For any s, s′ ∈ (0, 1) satisfying s+ s′ ≤ 1 we have

F (−∆)s(−∆)s
′
u = (2π|ξ|)2sF ((−∆)s

′
u)

= (2π|ξ|)2s(2π|ξ|)2s′û

= (2π|ξ|)2(s+s′)û

= F
(

(−∆)s+s
′
u
)
.

That is

(−∆)s(−∆)s
′
u = (−∆)s

′
(−∆)su = (−∆)s+s

′
u.
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As a special case of the above, when s = s′ = 1
2
, we obtain

((−∆)
1
2 )2 = −∆. (2.1)

From this observation, we see that if u : Rn+1
+ → R is the harmonic extension of f : Rn → R, that

is, if u solves 
∆u = 0, (x, y) ∈ Rn+1

+ ,

u(x, 0) = f(x), x ∈ Rn

(2.2)

then

− lim
y→0+

uy(x, y) = (−∆)
1
2f(x). (2.3)

Indeed, writing ∆x to represent the Laplacian in the coordinates x ∈ Rn, we may write the total

Laplacian in the variables (x, y) ∈ Rn × (0,+∞) as

∆ = ∆x +
∂2

∂y2
. (2.4)

Given a smooth and bounded function f : Rn → R, we take u := Uf (smooth and bounded)

solving (2.2) and consider the operator

L[f(x)] := −∂yUf (x, 0). (2.5)

Set v(x, y) := −uy(x, y). Computing, we find that ∆v = −∂y∆u = 0 in Rn × (0,+∞) and

v(x, 0) = L[f(x)] for any x ∈ Rn. Thus, we may recognize v as the harmonic extension of L[f ]
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and can write v = UL[f ]. Then,

L(L[f ])(x) = −∂yUL[f ](x, 0)

= −vy(x, 0)

= uyy(x, 0)

= ∆u(x, 0)−∆xu(x, 0)

= −∆xu(x, 0)

= −∆f(x)

which gives L2 = −∆. This is consistent wih L = (−∆)
1
2 , by (2.3).

We now fix s ∈ (0, 1) and f ∈ S (Rn) and consider the function u(x, y) that solves the

following Dirichlet problem in divergence form in the half-space Rn+1
+ :


div(ya∇u) = 0, (x, y) ∈ Rn+1

+ ,

u(x, 0) = f(x), x ∈ Rn.

(2.6)

Here, a = 1 − 2s ∈ (−1, 1). For simplicity, we sometimes may write Lau = div(ya∇u). Note

that (2.6) may be written in nondivergence form as follows:


−∆xu = uyy + a

y
uy, (x, y) ∈ Rn+1

+ ,

u(x, 0) = f(x) and u(x, y)→ 0 as y →∞ for each x ∈ Rn.

(2.7)

Direct computation yields the equivalency of problems (2.6) and (2.7).

The formulation of problem (2.7) is the product of a clever observation: For a nonnegative

integer a, we may suppose u : Rn × R1+a → R is radially symmetric in the y variable, with y

residing in the “fractional dimension”N = 1+a. That is, if |y| = |y′| = r, then u(x, y) = u(x, y′).

We can then think of u as a function of x and r, and in these variables write an expression for its
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Laplacian:

∆u = ∆xu+
a

r
ur + urr.

We thereby have obtained an identical expression for the equation in (2.7), with y replaced by r in

the expression. However, as far as the expression is concerned, there is no need to consider only

integer values of a. We can thus realize problem (2.7) as the harmonic extension problem of f in

dimension Rn+1+a for suitably chosen a.

Going forward, the goal of this chapter is to present the fundamental solution for (−∆)s and to

develop a Poisson kernel in order to obtain a representation formula for solutions to problem (2.7)

and, likewise, problem (2.6). Furthermore, we will show that

(−∆)sf = lim
y→0+

−yauy

up to a multiplicative constant, where s = 1−a
2

(analogously, a = 1− 2s). Note that setting a = 0

results in problem (2.3). Verification of the above limit will, however, be postponed until later.

Instead, we first focus on representing solutions for (−∆)s and problems (2.6) and (2.7). The

interested reader may refer to the original paper by Caffarelli and Silvestre [13], or the more recent

note by Garofalo [30] for more on this subject.

2.1 The Fundamental Solution

It is appropriate to first make some remarks about what is meant by a fundamental solution for

(−∆)s. We follow the presentation laid out by Garofalo (see [30]).

With the definition of the Schwartz space S (Rn) as a guide, we may define a fractional

Schwartz space. Indeed, given 0 < s < 1, we may consider the linear space of functions

u ∈ C∞(Rn) such that, for every multiindex α, we have

[u]α = sup
x∈Rn

(1 + |x|n+2s)|Dαu(x)| <∞.
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We denote by Ss(Rn) the space C∞(Rn) whose topology is generated by the countable family of

seminorms [·]α, and by S ′
s(Rn) its topological dual. We have the following inclusions

C∞0 (Rn) ↪→ S (Rn) ↪→ Ss(Rn) ↪→ C∞(Rn),

as well as the dual inclusions

E ′(Rn) ↪→ S ′
s(Rn) ↪→ S ′(Rn) ↪→ D ′(Rn),

with E ′(Rn) denoting the space of distributions with compact support. To justify the introduction

of the new space Ss(Rn), we have the following proposition:

Proposition 2.1.1. Let u ∈ S (Rn). Then (−∆)su ∈ Ss(Rn).

Proposition 2.1.1 follows from Proposition 1.2.1, Proposition 1.3.3, and Corollary 1.3.1 by

induction on the order of α, where α is a multiindex. With this fact in mind, we may extend the

notion of a solution to the distributional sense.

Definition 2.1.1 (Distributional Solution). Let F ∈ S ′(Rn). We say that a distribution u ∈

S ′
s(Rn) solves (−∆)su = F if for every test function φ ∈ S (Rn) one has

〈u, (−∆)sφ〉 = 〈F, φ〉.

In the special case for which F is the Dirac delta, Definition 2.1.1 yields the following:
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Definition 2.1.2 (Fundamental Solution). We say that a distribution Φs ∈ S ′
s(Rn) is a fundamental

solution of (−∆)s if (−∆)sΦs = δ. This means that, for every φ ∈ S (Rn), one has

〈Φs, (−∆)sφ〉 ≡ φ(0).

From Definition 2.1.2, it is evident that if Φs ∈ S ′
s(Rn) is a fundamental solution of (−∆)s,

then one has (−∆)sΦs = 0 in D ′(Rn \ {0}). In fact, there exists an explicit fundamental solution

Φs ∈ C∞(Rn \ {0}) for (−∆)s.

Theorem 2.1.1. Let n ≥ 2 and 0 < s < 1. Denote by

Ψs(x) = α(n, s)|x|−(n−2s), (2.8)

where the normalizing constant α(n, s) above is given by

α(n, s) =
Γ(n

2
− s)

22sπ
n
2 Γ(s)

. (2.9)

Then Ψs is a fundamental solution for (−∆)s.

We henceforth refer to Ψs as defined in Theorem 2.1.1 as the fundamental solution for (−∆)s.

The proof of Theorem 2.1.1, which we present shortly, is a result of two technical lemmata.

Lemma 2.1.1. Suppose that either n ≥ 2, or n = 1 and 0 < s < 1
2
. For every y > 0, consider the

regularized fundamental solution

Ψs,y(x) = α(n, s)(y2 + |x|2)−
n−2s

2 . (2.10)

Then

Ψ̂s,y(ξ) =
ys

22s−1πsΓ(s)
|ξ|−sKs(2πy|ξ|), (2.11)

where Ks denotes the modified Bessel function of the third kind (see (C.21)). Moreover, we obtain
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for every ξ 6= 0

Ψ̂s(ξ) = lim
y→0+

Ψ̂s,y(ξ) = (2π|ξ|)−2s. (2.12)

Proof. We will prove only (2.11), as (2.12) is a simple computation which follows from (2.11). To

establish (2.11), it suffices to show that

〈Ψ̂s,y, f〉 =
ys

22s−1πsΓ(s)

ˆ
Rn
|ξ|−sKs(2πy|ξ|)f(ξ) dξ (2.13)

for every f ∈ S (Rn). Note that ˆ ∞
0

e−tLtα
dt

t
=

Γ(α)

Lα

for any L > 0 and α > 0. To see this, apply the change of variable u = tL and compare the

resultant integral to Euler’s gamma function. Set L = |ξ|2 + y2 and fix α > 0. By Fubini’s

Theorem, we have

ˆ ∞
0

tα

(ˆ
Rn
e−t(|ξ|

2+y2)f̂(ξ) dξ

)
dt

t
=

ˆ
Rn
f̂(ξ)

(ˆ ∞
0

tαe−t(|ξ|
2+y2)dt

t

)
dξ

= Γ(α)

ˆ
Rn
f̂(ξ)

(
|ξ|2 + y2

)−α
dξ. (2.14)

By assumption, we have n ≥ 2 or n = 1 and 0 < s < 1
2

so that n
2
− s > 0. Thus, we may take

α = n
2
− s in (2.14) to find

ˆ ∞
0

t
n
2
−s

(ˆ
Rn
e−t(|ξ|

2+y2)f̂(ξ) dξ

)
dt

t
= Γ

(n− 2s

2

) ˆ
Rn
f̂(ξ)

(
|ξ|2 + y2

)−(n−2s
2

)

dξ. (2.15)

Then, by the symmetry property of the Fourier transform, we find that for every f ∈ Rn and y > 0

ˆ
Rn

Fx→ξ
(
e−t(|x|

2+y2)
)
f(ξ) dξ =

ˆ
Rn
e−t(|ξ|

2+y2)f̂(ξ) dξ. (2.16)

Multiplying each side of equation (2.16) by t
n
2
−s and integrating between 0 and∞ with respect to
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the dilation invariant measure dt
t

, we obtain

ˆ ∞
0

t
n
2
−s
ˆ
Rn

Fx→ξ
(
e−t(|x|

2+y2)
)
f(ξ) dξ

dt

t
=

ˆ ∞
0

t
n
2
−se−y

2t

ˆ
Rn

̂(e−t|·|2)(ξ)f(ξ) dξ
dt

t
. (2.17)

Since

̂(e−t|·|2)(ξ) =
π
n
2

t
n
2

e−π
2 |ξ|2

t ,

substituting the above into (2.17) yields

ˆ ∞
0

t
n
2
−s
ˆ
Rn

Fx→ξ
(
e−t(|x|

2+y2)
)
f(ξ) dξ

dt

t
= π

n
2

ˆ ∞
0

t−se−y
2t

ˆ
Rn
e−π

2 |ξ|2
t f(ξ) dξ

dt

t

= π
n
2

ˆ
Rn
f(ξ)

(ˆ ∞
0

t−se−y
2te−π

2 |ξ|2
t
dt

t

)
dξ.

(2.18)

Applying (C.29) with ν = −s, β = π2|ξ|2, and γ = y2, and recalling that Kν = K−ν , we find

ˆ ∞
0

t−se−y
2te−π

2 |ξ|2
t
dt

t
= 2
( y

π|ξ|

)s
Ks(2πy|ξ|). (2.19)

Substituting (2.19) into (2.18), we obtain

ˆ ∞
0

t
n
2
−s
ˆ
Rn

̂(
e−t(|·|2+y2)

)
(ξ)f(ξ) dξ

dt

t
= 2π

n
2
−sys
ˆ
Rn
|ξ|−sKs(2πy|ξ|)f(ξ) dξ. (2.20)

Putting this all together, we see that

α(n, s)

ˆ
Rn
f̂(ξ)(|ξ|2 + y2)−(n−2s

y
) dξ = α(n, s)

2π
n
2
−sys

Γ(n−2s
2

)

ˆ
Rn
|ξ|−sKs(2πy|ξ|)f(ξ) dξ. (2.21)

Now, since

α(n, s) =
Γ(n

2
− s)

22sπ
n
2 Γ(s)

,
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may replace α(n, s) on the right-hand side of (2.21) to obtain the expression

α(n, s)

ˆ
Rn
f̂(ξ)(|ξ|2 + y2)−(n−2s

y
) dξ =

ys

22s−1πsΓ(s)

ˆ
Rn
|ξ|−sKs(2πy|ξ|)f(ξ) dξ. (2.22)

We have thus shown

〈Ψs,y, f̂〉 =
ys

22s−1πsΓ(s)

ˆ
Rn
|ξ|−sKs(2πy|ξ|)f(ξ) dξ. (2.23)

Since 〈Ψ̂s,y, f〉 = 〈Ψs,y, f̂〉 by definition, we conclude that (2.13) holds, as was to be shown.

Lemma 2.1.2. For every y > 0 the function Ψs,y satisfies the equation

(−∆)sΨs,y(x) = y2sΓ(n
2

+ s)

π
n
2 Γ(s)

(y2 + |x|2)−(n
2

+s) (2.24)

Proof. Define

Fs,y(x) := (−∆)sΨs,y(x). (2.25)

By Proposition 1.2.1 and Lemma 2.1.1, we readily observe that

F̂s,y(ξ) = ̂(−∆)sΨs,y(ξ)

= (2π|ξ|)2sΨ̂s,y(ξ)

= (2π|ξ|)2s ys

22s−1πsΓ(s)
|ξ|−sKs(2πy|ξ|)

=
2ysπs

Γ(s)
|ξ|sKs(2πy|ξ|). (2.26)

Then, the Fourier-Bessel representation (C.25) implies

Fs,y(x) =
4ysπs+1

Γ(s)

1

|x|n2−1

ˆ ∞
0

t
n
2

+sKs(2πyt)Jn
2
−1(2π|x|t) dt. (2.27)
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Letting γ = −n
2
− s, µ = s, and ν = n

2
− 1, we may write the right-hand side of (2.27) in the form

ˆ ∞
0

t−λKµ(at)Jν(bt) dt

with a = 2πy and b = 2π|x|. The assumption ν − γ + 1 > |µ| is then analogous to n + s > s

which clearly holds, so we may use (C.28) to obtain

ˆ ∞
0

t
n
2

+sKs(2πyt)Jn
2
−1(2π|x|t) dt =

(2π|x|)n2−1Γ(n
2

+ s)

2−
n
2
−s+1(2πy)n+1

· F
(n

2
+ s,

n

2
;
n

2
;−|x|

2

y2

)
. (2.28)

Since

F
(n

2
+ s,

n

2
;
n

2
;−|x|

2

y2

)
=
(

1 +
|x|2

y2

)−(n
2

+s)

,

the right-hand side of (2.28) is equivalent to

(2π|x|)n2−1Γ(n
2

+ s)

2−
n
2
−s+1(2πy)n+s

(
1 +
|x|2

y2

)−(n
2

+s)

. (2.29)

Replacing in (2.28), we find

Fs,y(x) =
Γ(n

2
+ s)

ynπ
n
2 Γ(s)

(
1 +
|x|2

y2

)−(n
2

+s)

=
y2sΓ(n

2
+ s)

π
n
2 Γ(s)

(
y2 + |x|2

)−(n
2

+s)

, (2.30)

which is (2.24).

With Lemma 2.1.1 and Lemma 2.1.2 in our arsenal, Theorem 2.1.1 now follows without too

much effort.

Proof of Theorem 2.1.1. We need to establish

ˆ
Rn

Ψs(x)(−∆)sφ(x) dx = φ(0) (2.31)

for all test functions φ ∈ S (Rn). The hypothesis n ≥ 2 implies 0 < s < n
2
. For fixed y > 0,
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consider the regularization Ψs,y of Ψs. By observation, we see that Ψs,y ∈ C∞(Rn) for all y > 0

and decays at infinity like |x|−(n−2s). Since φ ∈ S (Rn) implies (−∆)sφ ∈ Ss(Rn), Lebesgue’s

dominated convergence theorem gives

ˆ
Rn

Ψs,y(x)(−∆)sφ(x) dx→
ˆ
Rn

Ψs(x)(−∆)sφ(x) dx (2.32)

as y → 0+. By the symmetry property,

ˆ
Rn

Ψs,y(x)(−∆)sφ(x) dx =

ˆ
Rn

(−∆)sΨs,y(x)φ(x) dx. (2.33)

Therefore, it suffices to show

ˆ
Rn

(−∆)sΨs,y(x)φ(x) dx→ φ(0) (2.34)

as y → 0+. Applying Lemma 2.1.2, we have

ˆ
Rn

(−∆)sΨs,y(x)φ(x) dx =
Γ(n

2
+ s)

ynπ
n
2 Γ(s)

ˆ
Rn

(
1 +
|x|2

y2

)−(n
2

+s)

φ(x) dx

With the change of variable x′ = x
y

on the right-hand side of the above expression, we obtain

ˆ
Rn

(−∆)sΨs,y(x)φ(x) dx =
Γ(n

2
+ s)

π
n
2 Γ(s)

ˆ
Rn

(
1 + |x′|2

)−(n
2

+s)

φ(yx′) dx′

→ φ(0)
Γ(n

2
+ s)

π
n
2 Γ(s)

ˆ
Rn

(
1 + |x′|2

)−(n
2

+s)

dx′ (2.35)

as y → 0+ by the dominated convergence theorem. Then, applying (C.10) with a = n + 2s and

b = 0, we find that the integral in (2.35) is equal to

π
n
2 Γ(s)

Γ(n
2

+ s)
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so that ˆ
Rn

(−∆)sΨs,y(x)φ(x) dx→ φ(0) (2.36)

as y → 0+. Since this yields (2.31), the proof of the theorem is complete.

Before we derive the Poisson kernel for (−∆)s, some remarks are necessary.

Remark 2.1.1. In the proof of Theorem 2.1.1, we used the fact that n − 2s > 0. Thus, the proof

provided works for the cases n = 1 and 0 < s < 1
2
, as well as the situation n ≥ 2. However, we

must also consider the following two cases:

• n = 1 and 1
2
< s < 1;

• n = 1 and s = 1
2
.

In the first case, formulas (2.8) and (2.9) continue to hold while in the second case they must be

replaced with the following:

Ψs(x) = − 1

π
log |x|.

For more on these cases, see [30].

2.2 The Poisson Kernel

We have now reached the heart of this chapter, the derivation of the Poisson kernel for problem

(2.7). We follow the proof provided by Garofalo in [30].

Theorem 2.2.1. Let f ∈ S (Rn). Then the solution u to the extension problem (2.7) (likewise,

(2.6)) is given by

u(x, y) = (Ps,y ∗ f)(x) =

ˆ
Rn
Ps,y(x− z)f(z) dz, (2.37)

where

Ps,y(x) =
Γ(n

2
+ s)

π
n
2 Γ(s)

y2s

(y2 + |x|2)
n+2s

2

(2.38)

is the Poisson kernel for the extension problem in the half-space Rn+1
+ .
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Proof. Applying the Fourier transform in the variable x ∈ Rn to problem (2.7), we obtain the

transformed problem


∂2

∂y2 û(ξ, y) + a
y
∂
∂y
û(ξ, y)− 4π2|ξ|2û(ξ, y) = 0 in Rn+1

+ ,

û(ξ, 0) = f̂(ξ) for ξ ∈ Rn, û(ξ, y)→ 0 as y → +∞.
(2.39)

Fix ξ ∈ Rn \ {0} and write Y (y) = Yξ(y) = û(ξ, y) to rewrite problem (2.39) as an ODE in the

variable y ∈ R+ as


y2Y ′′(y) + ayY ′(y)− 4π2|ξ|2y2Y (y) = 0 for y ∈ R+,

Y (0) = f̂(ξ), Y (y)→ 0 as y → +∞.
(2.40)

Comparing the ODE in (2.40) with the generalized modified Bessel equation in (C.22) with α = s,

γ = 1, ν = s, and β = 2π|ξ|, we see that two linearly independent solutions to (2.40) are given by

Y1(y) = ysIs(2π|ξ|y) (2.41)

and

Y2(y) = ysKs(2π|ξ|y). (2.42)

Thus, for all ξ 6= 0 we see that the general solution to problem (2.40) is given by

Y (y) = û(ξ, y) = AysIs(2π|ξ|y) +BysKs(2π|ξ|y) (2.43)

for constants A and B. In order to satisfy the condition û → 0 as y → +∞, we must have that

A = 0 by the asymptotic behavior of Ks and Is at +∞. We thereby conclude that

û(ξ, y) = BysKs(2π|ξ|y) (2.44)
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for some constant B to be determined. Using the asymptotics (C.23) and(C.24), we find that

BysKs(2π|ξ|y)→ Bπ2s−1(2π|ξ|)−s

Γ(1− s) sin(πs)
(2.45)

= B2s−1Γ(s)(2π|ξ|)−s

as y → 0+. Applying the initial condition, we see that

B =
(2π|ξ|)sĝ(ξ)

2s−1Γ(s)
.

Substituting the above expression for B into (2.45), we find that the solution to the transformed

problem (2.40) is given by

û(ξ, y) =
(2π|ξ|)sĝ(ξ)

2s−1Γ(s)
ysKs(2π|ξ|y). (2.46)

To complete the proof, we must apply the inverse Fourier transform to obtain an expression for

the solution in the original variables. From (2.46) and the convolution property of the Fourier

transform, it is clear that the solution u(x, y) to the problem (2.7) will be given by (2.37), with

Ps(x, y) to be determined. Therefore, to conclude the proof we must prove (2.38). This amounts

to showing

F−1
ξ→x

(
(2π|ξ|)sĝ(ξ)

2s−1Γ(s)
ysKs(2π|ξ|y)

)
=

Γ(n
2

+ s)

π
n
2 Γ(s)

y2s

(y2 + |x|2)
n+2s

2

. (2.47)

Since the right-hand side of(2.46) is spherically symmetric in the variable ξ, showing (2.47) is

equivalent to establishing

Fξ′→x

(
2πs|ξ′|sys

Γ(s)
Ks(2π|ξ′|y)

)
=

Γ(n
2

+ s)

π
n
2 Γ(s)

y2s

(y2 + |x|2)
n+2s

2

. (2.48)

By the Fourier-Bessel representation (C.25), this is the same as showing

2sπs+1ys

|x|n2−1Γ(s)

ˆ ∞
0

t
n
2

+sKs(2πyt)Jn
2
−1(2π|x|t) dt =

Γ(n
2

+ s)

π
n
2 Γ(s)

y2s

(y2 + |x|2)
n+2s

2

, (2.49)
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where Jν denotes the Bessel function of order ν (see (C.12)). Fortunately, the identity (2.49) fol-

lows immediately from (2.28), (2.29), and (2.30). Thus, combining (2.48) and (2.49) we conclude

Ps,y(x) =
Γ(n

2
+ s)

π
n
2 Γ(s)

y2s

(y2 + |x|2)
n+2s

2

. (2.50)

Since we have shown that (2.38) is indeed the correct formula for Ps,y(x), the theorem follows.

Remark 2.2.1. We remark that formula (2.37) continues to hold under less stringent conditions on

f . For instance, one may check that u as in (2.37) is well-defined and solves problem (2.7) if f

is bounded and f ∈ C2
loc(Rn). In fact, (2.37) is the unique solution (up to an additive constant) in

C(Rn+1
+ ) ∩ L∞(Rn+1

+ ) to problem (2.7) assuming only that f ∈ C(Rn) ∩ L∞(Rn) (see Corollary

3.5 and Remark 3.8 in [9]).

Let us check that the Poisson kernel for the operator La in the upper half-space Rn+1
+ posseses

the properties we would expect our Poisson kernel to have.

After setting b = 0 and a = n+ 2s in (C.10), from (2.38) we see that

‖Ps,y(x)‖L1(Rn) =

ˆ
Rn
Ps,y(x) dx = 1 (2.51)

for every y > 0. Furthermore, comparing the expression for the Poisson kernel (2.38) with (2.24)

in Lemma 2.1.2, we conclude that we have, in fact, shown

Ps,y(x) = (−∆)sΨs,y(x), (2.52)

where y > 0 is fixed, the function Ψs,y being the y-regularization of the fundamental solution of

(−∆)s. We have therefore proved that

lim
y→0+

Ps,y(x) = δ(x) (2.53)

in S ′(Rn). Finally, setting s = 1
2

we have a = 1− 2s = 0, and the extension operator La reduces
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to the standard Laplacian La = ∆x + ∂2

∂y2 in Rn+1
+ . Thus, from the formula (2.38), we see that

P 1
2
,y(x) =

Γ(n+1
2

)

π
n+1

2

y

(y2 + |x|2)
n+1

2

, (2.54)

which is the standard Poisson kernel for ∆ in the upper half-space Rn+1
+ . It follows that formula

(2.38) is consistent with the classical theory, and is an appropriate generalization for the Poisson

kernel for the upper-half space corresponding to fractional powers of the Laplacian.

2.3 Local realization of (−∆)s

So far, we have derived a Poisson kernel for the extension problem (2.7) (likewise, problem (2.6))

from which we may obtain the classical Poisson kernel. What remains to be shown is the relation-

ship between our solution (2.37) of (2.7) and the fractional Laplacian of our boundary function

f .

Theorem 2.3.1 (Local Realization of (−∆)s). For u as in (2.37), we have

(−∆)sf(x) = −22s−1Γ(s)

Γ(1− s)
lim
y→0+

yauy(x, y). (2.55)

Remark 2.3.1. We henceforth write ds := 22s−1Γ(s)
Γ(1−s) .

Proof. By (2.51), we may write

u(x, y) =
Γ(n

2
+ s)

π
n
2 Γ(s)

ˆ
Rn

y2s

(y2 + |x− z|2)
n+2s

2

(f(z)− f(x)) dz + f(x).

Differentiating both sides with respect to y, we find

uy(x, y) = 2s
Γ(n

2
+ s)

π
n
2 Γ(s)

ˆ
Rn

y−a

(y2 + |x− z|2)
n+2s

2

(f(z)− f(x)) dz +O(y2) as y → 0+.

Here we have differentiated under the integral sign using the product rule and the fact that 2s =
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1− a. It follows that

yauy(x, y) = 2s
Γ(n

2
+ s)

π
n
2 Γ(s)

ˆ
Rn

f(z)− f(x)

(y2 + |x− z|2)
n+2s

2

dz +O(y2). (2.56)

Then, appealing to Corollary 1.3.1 and letting y → 0+, Lebesgue’s dominated convergence theo-

rem gives

lim
y→0+

yauy(x, y) = 2s
Γ(n

2
+ s)

π
n
2 Γ(s)

P.V.

ˆ
Rn

f(z)− f(x)

|x− z|n+2s
dz

= −2s
Γ(n

2
+ s)

π
n
2 Γ(s)

· C(n, s)−1(−∆)sf(x). (2.57)

Noting that C(n, s) =
s22sΓ(n+2s

2
)

π
n
2 Γ(1−s)

for 0 < s < 1, we obtain the result.

There are several proofs of Theorem 2.3.1, and Caffarelli and Silvestre presented two in their

original paper1 [13]. We have chosen the above for its simplicity.

Now that we have established a direct link between local and nonlocal problems via the exten-

sion problem (2.6), we are ready to focus our attention on a conjecture of Enrico De Giorgi in both

the local and nonlocal case.

1One similar to above and one via the Fourier transform.
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CHAPTER 3: DE GIORGI’S CONJECTURE FOR THE ALLEN-CAHN

EQUATION

In the present chapter, we study an extended version of Enrico De Giorgi’s conjecture for the

Allen-Cahn equation1 for a more general class of nonlinearities which includes the Allen-Cahn

nonlinearity. Much of the background material in this chapter has been adapted from [14], [20], and

[50]. After introducing and motivating the problem, we present the proof, as given by Ambrosio

and Cabré in [2], for dimension n = 3. The techniques used by Ambrosio and Cabré when

n = 3 generalizes to the case n = 2, however, the proof for this case was originally provided by

Ghoussoub and Gui in [31]. We will not go into too much detail concerning dimensions 4 ≤ n ≤ 8,

proved by Savin in [49] under a mild limit assumption, as the proof incorporates techniques from

minimal surface theory and is outside the scope of this thesis. Nonetheless, the author feels that

this topic constitutes an intriguing subject for future study. We conclude the chapter by discussing

current directions. In the chapter that follows, we will consider De Giorgi’s conjecture for the

nonlocal operator (−∆)s introduced in Chapter 2.

3.1 Background

Of central importance in theory of PDE is the classification of solutions. For example, in an in-

troductory course much time is dedicated to existence and uniqueness of solutions for elliptic,

parabolic, and hyperbolic PDE, as well as Liouville-type theorems2, maximum principles, regular-

ity, and related topics. In the same spirit, De Giorgi’s conjecture is a Liouville-type theorem for

the nonlinear Allen-Cahn equation

−∆u = u− u3 in Rn, (3.1)
1We henceforth refer to the conjecture as De Giorgi’s conjecture.
2These are theorems which aim to classify solutions to a given PDE due to some boundedness properties that

resemble the classic Liouville theorem one studies in a first course in complex analysis.
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which is the Euler-Lagrange equation for the Ginzburg-Landau energy

JΩ(u) =

ˆ
Ω

(1

2
|∇u|2 +

1

4
(1− u2)2

)
dx. (3.2)

More generally, a Ginzburg-Landau energy is a functional of the form

JΩ(u) =
1

2

ˆ
Ω

|∇u|2 +W (u) dx, (3.3)

where W is a double-well potential having minima at u = ±1 satisfying the following:

1. W ∈ C2([−1, 1]),

2. W (−1) = W (1) = 0,

3. W > 0 on (−1, 1),

4. W ′(−1) = W ′(1) = 0,

5. W ′′(−1) > 0 and W ′′(1) > 0.

Comparing with (3.2), one easily verifies that W (u) := 1
4
(1− u2)2 has minima at u = ±1 and

satisfies the above criteria so that W is a double-well potential and (3.2) is, in fact, a Ginzburg-

Landau energy.

To motivate Conjecture 3.2.1 below, we turn to the study of equation (3.1) in the context of

phase transitions (mathematical physics). Consider a pure body contained in a bounded region of

space Ω, in which the state (thermodynamic, say) may change from one to another. To each phase,

we may assign the value u = −1 or u = 1, while the transient state of the body is assigned a value

u ∈ (−1, 1). We are interested in the description of the interface between these two states. In fact,

such an interface should be close to a minimal surface, that is, a surface that locally minimizes its

area3. As a concrete example, one may think of a surface formed after dipping a frame in water

and soap solution. Though this physical experiment is easy to perform, the mathematics is very

intricate. For example, there may be more than one locally minimizing surface, and they may have

non-trivial topology. Let us formulate our working definition of a minimal surface more precisely.
3Aside from phase transitions, the study of minimal surface problems are also important in other areas of mathe-

matical physics, such as general relativity. As this is not the focus of the current project, we refer the reader to [55].
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Definition 3.1.1. A surface M ⊂ Rn is minimal if and only if every point p ∈ M has a neighbor-

hood with least area relative to its boundary.

For our purposes, it is necessary to consider the variational formulation of Definition 3.1.1.

The calculus of variations uses small changes in functions and functionals (i.e. variations) to find

maxima and minima of functionals. In fact, many problems are simplified in this manner and a

perfect example is given by Dirichlet’s principle4 from classical PDE theory.

Definition 3.1.2 (Variational Formulation). A surface M ⊂ Rn is said to be minimal if and only if

it is the critical point of the area functional for all compactly supported variations.

Consider the Lagrangian L : Rn × R× Ω→ R

L(p, z, x) =
(
1 + |p|2

) 1
2

and define the area functional

A[u] =

ˆ
Ω

(
1 + |∇u|2

) 1
2 dx (3.4)

giving the area of the graph of the function u : Ω → R. The associated Euler-Lagrange equation

is given by

div

(
∇u(

1 + |∇u|2
) 1

2

)
= 0 in Ω. (3.5)

Noting that the lefthand side in (3.5) is a constant multiple of the mean curvature of the graph of u,

we see that minimal surfaces also have zero mean curvature5. In fact, this condition is equivalent to

Definition 3.1.1 and Definition 3.1.2. Simple examples of minimal surfaces include hyperplanes,

catenoids {cosh2(x3) = x2
1 + x2

2}, and helicoids {(r cos t, r sin t, t) : r > 0, t ∈ R}.

Let us return to the phase transition model. In a typical phase transition model, the unknown

4Dirichlet’s principle asserts that if u ∈ A := {w ∈ C2(Ω) : w = g on ∂Ω} solves −∆u = f in Ω and u = g on
∂Ω, then u minimizes the energy

I(w) :=

ˆ
Ω

1

2
|∇w|2 − wf dx.

5The mean curvature of a surface, denoted by H , is an extrinsic measure of curvature that locally describes the
curvature of an embedded surface in some ambient space.

43



function u := u(x) represents the density of a two-phase fluid at a point x in a domain Ω ⊂ Rn.

The double–well potential W (u(x)) represents the energy density of the fluid in the domain Ω and

has minima at u1, u2 with W (u1) = W (u2) = 0 6. In fact, for u 6= u1, u2, we find W (u) > 0. Note

that the densities u1, u2 represent stable fluid phases.

At this point, it is tempting to conclude that the total energy of the fluid in Ω is given by

ˆ
Ω

W (u(x)) dx,

however, this is not satisfactory since any density function u(x) that takes only the values u1, u2

minimizes the energy. Indeed, for such a u, we see that W (u) ≡ 0. Moreover, in this scenario it

is possible for the stable phases u1, u2 to coexist along any complicated interface. The issue is that

we ignored the kinetic energy term which takes into account interactions at small scales, such as

friction. As such, we introduce the rescaled energy

Jε,Ω(u) =
ε2

2

ˆ
Ω

|∇u|2 dx+

ˆ
Ω

W (u) dx, (3.6)

where ε > 0 is taken to be small.

The presence of the gradient squared term in (3.6) coupled with the additional assumption that

u belong to an appropriate Sobolev space prevents instantaneous jumps from a region of density

u1 to a region of density u2. In general, these stable states are only attained asymptotically by u.

Moreover, the transition region between the two phases occurs in a thin region of width ε. We

want to understand this transition at length-scale ε. To do so, we must dilate by a factor of 1
ε

and

consider the rescaled density uε(x) := u(εx) which minimizes the energy (3.3) and thereby solves

the Euler-Lagrange equation

∆u = W ′(u)

in the rescaled domain Ω
ε
. Indeed, by a simple change of variable argument, we see that u min-

imizes (3.6) if and only if uε minimizes (3.3) allowing us to work with the normalized equation

6In our case, we have set u1 = 1 and u2 = −1.
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(3.3) in lieu of equation (3.6). In fact, letting ε → 0 in the original domain7 Ω, the transition re-

gion converges to a minimal surface inside Ω which motivated De Giorgi to conjecture that global

solutions to the Euler-Lagrange equation above should have similar properties to the seemingly

unrelated concept, global minimal surfaces.

3.1.1 Minimal Surfaces and De Giorgi

Before we continue, it is appropriate to make clear De Giorgi’s approach. The idea of De Giorgi is

to view hypersurfaces in Rn as boundaries of “nice” subsets of Rn. As one might imagine, the nice

sets we are referring to are the measurable subsets of Rn. Let E ⊂ Rn be measurable and define

the perimeter of E (or area of ∂E) in a domain Ω ⊂ Rn as the total variation8 of the characteristic

function of E, χE , in Ω. That is,

PΩ(E) =

ˆ
Ω

|∇χE| = sup
|g|≤1

∣∣∣∣ˆ
E

div g dx

∣∣∣∣, (3.7)

where the supremum appearing in the above expression is taken over all vector fields g ∈ C1
0(Ω)

satisfying |g| ≤ 1. When ∂E is aC1 hypersurface we see that (3.7) is equivalent to the usual notion

of the area of ∂E via Green’s theorem. Moreover, with (3.7) at our disposal, we may reformulate

our definition of a minimal surface once more.

Definition 3.1.3 (Minimal Perimeter & Minimal Surface). We say that E is a set with minimal

perimeter in Ω, equivalently, ∂E is a minimal surface in Ω if, for every open set U ⊂ Ω relatively

compact (i.e. having compact closure) in Ω,

PU(E) ≤ PU(F ) (3.8)

7In this case, we write u := u(xε ).
8The total variation of an integrable function u defined on an open set Ω ⊂ Rn, where n ≥ 2, is given by

V (u,Ω) := sup
{ˆ

Ω

u(x) div φ(x) dx : φ ∈ C1
0 (Ω) and ‖φ‖L∞(Ω) ≤ 1

}
.
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whenever E and F coincide outside of a compact set included in U .

Now that the background and motivations are established, let us take a short detour to discuss

some results that, aside from being of independent interest, will be useful in establishing some key

bounds and sharpness of estimates.

3.1.2 A Monotonicity Formula of L. Modica

In 1985, Modica proved in [42] that if W ≥ 0 in R, then every bounded solution u ∈ C2(Rn) of

−∆u = f(u) in Rn (3.9)

satisfies the gradient bound

1

2
|∇u|2 ≤ W (u) pointwise in Rn. (3.10)

Here, W ′(u) = −f(u), and we may take W to be a double-well potential, for example. Such

a result is now commonly referred to as a Modica-type estimate, and they have been useful in

establishing monotonicity formulae for both the local and nonlocal operators ∆ and (−∆)s, for

instance. In particular, (3.10) says that the kinetic energy of a phase transition system, say, is

bounded at every point by the potential energy everywhere in Rn.

Our goal in this section is to present an estimate by Modica for problem (3.9) and use this

to establish a monotonicity formula for the associated Ginzburg-Landau energy (3.3), also due

to Modica. The Modica estimate and monotonicity formula will be useful in the next chapter to

establish a key gradient bound and prove sharpness of an important estimate.

To accomplish this goal, we need to first establish the Pohozaev identity. This result is well

known and can be found in the texts of Dupaigne [20] and Evans [21]. The Pohozaev identity will

be crucial in the proof of the Modica estimate.
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Lemma 3.1.1 (Pohozaev Identity). Let n ≥ 2. Let Ω ⊂ Rn denote a smooth and bounded domain

and let u ∈ C2(Ω) ∩ C1(Ω). Then,

ˆ
Ω

∆u(x · ∇u) dx =
n− 2

2

ˆ
Ω

|∇u|2 dx− 1

2

ˆ
∂Ω

|∇u|2x · ν dS +

ˆ
∂Ω

∂νu · (∇u · x) dS, (3.11)

where ν denotes the outward unit normal to ∂Ω. If, in addition, u is constant on the boundary of

Ω, then ˆ
Ω

∆u(x · ∇u) dx =
n− 2

2

ˆ
Ω

|∇u|2 dx+
1

2

ˆ
∂Ω

|∇u|2x · ν dS. (3.12)

Proof. The proof is simply successive applications of the integration by parts formula. We have

ˆ
Ω

∆u(x · ∇u) dx =
n∑

i,j=1

ˆ
Ω

uxixixjuxj dx

=
n∑

i,j=1

(
−
ˆ

Ω

uxi(xjuxj)i dx+

ˆ
∂Ω

uxiνixjuxj dS

)

=
n∑

i,j=1

(
−
ˆ

Ω

uxiδijuxj dx−
ˆ

Ω

uxiuxixjxj dx+

ˆ
∂Ω

uxiνixjuxj dS

)

= −
ˆ

Ω

|∇u|2 dx− 1

2

ˆ
Ω

∇(|∇u|2) · x dx+

ˆ
∂Ω

(∇u · ν)(∇u · x) dS

=
n− 2

2

ˆ
Ω

|∇u|2 dx− 1

2

ˆ
∂Ω

|∇u|2x · ν dS +

ˆ
∂Ω

∂νu(∇u · x) dS.

This is (3.11). If, in addition, u is constant on ∂Ω, then∇u = |∇u|ν on ∂Ω so (3.12) follows.

The proof of the Modica estimate below proceeds in four steps, which we label for clarity. Due

to the length of the proof, we leave out some of the details. However, all of the details can easily

be reconstructed from the proof given below.
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Proposition 3.1.1 (Modica Estimate; see [41]). Let n ≥ 1. Let u ∈ C3(Rn) denote a bounded

solution to the problem

−∆u = f(u) in Rn, (3.13)

where W ∈ C2(Rn) is nonnegative and W ′(u) = −f(u). Then,

1

2
|∇u|2 ≤ W (u) in Rn. (3.14)

Proof. The idea is to show that the function P (x) := |∇u|2 − 2W (u) is nonpositive, as this will

give us (3.14). Since u ∈ C3(Rn) is bounded, we see that P is bounded and, by continuity,

infRn |∇u| = 0. In particular, given δ > 0, we may assume up to a translation of space that

|∇u|2(0) < δ. (3.15)

1. We claim that P satisfies the inequality

|∇u|2∆P ≥ 1

2
|∇P |2 − 2f(u)∇u · ∇P (3.16)

in Rn. Indeed, for each i = 1, . . . , n, we have

Pxi = 2
n∑
j=1

uxjuxixj + 2f(u)uxi . (3.17)

From (3.17) and the Cauchy-Schwarz inequality, we see that

∑
i=1

(Pxi − 2f(u)uxi)
2 = 4

n∑
i=1

( n∑
j=1

uxjuxixj

)2

≤ 4
n∑
j=1

u2
xj

n∑
i,j=1

u2
xixj

= 4|∇u|2‖Hu‖2
FR, (3.18)
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where we have denoted Hu the Hessian matrix of u and ‖·‖FR the Frobenius matrix norm.

Differentiating (3.17) with respect to xi once more and summing over i, we find

∆P = 2
n∑

i,j=1

u2
xixj

+ 2
n∑
j=1

uxj(∆u)xj + 2f ′(u)|∇u|2 + 2f(u)∆u

= 2‖Hu‖2
FR − 2[f(u)]2, (3.19)

with the last equality (3.19) obtained from the fact that u solves (3.13). Whence, from (3.18)

and (3.19) we have

|∇u|2∆P ≥ 1

2

n∑
i=1

(Pxi − 2f(u)uxi)
2 − 2[f(u)]2|∇u|2

=
1

2
|∇P |2 − 2f(u)∇u · ∇P,

which is (3.16).

2. Let ε > 0 and R > 0. Then, there exists a radial cutoff function η(r) := ηε,R(|x|) ∈ C2(Rn)

having the following properties:

η(R) = 1, η > 0, η′ < 0, and lim
r→∞

η(r) = 0, (3.20)

lim
ε→0+

η(r) = 1 for all r ≥ R, (3.21)

η2

(η′)2

(2η′

η
− M

ε
η′ − η′′ − (n− 1)η′

r

)
≤ ε

L
for all r ≥ R, (3.22)

where

M = sup
Rn

2|f(u)||∇u| and L = sup
Rn

2|∇u|2. (3.23)

Indeed, set

gε(t) =

ˆ 1

t

e−
ε
Ls

s2
ds for 0 ≤ t ≤ 1
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and

hε,R(t) =

ˆ t

R

e−(M
ε

)s

sn−1
ds for t ≥ R.

Take

η(r) = g−1
ε (c · hε,R(r)) for r ≥ R,

where

c =
gε(0)

hε,R(+∞)
.

Then (3.20) follows immediately. For (3.21), it suffices to note that hε,R → 0 as ε → 0 and

g−1
ε (0+) = 1. For (3.22), differentiate, take the log, and differentiate again with respect to r

the equality ˆ 1

η

e−
ε
Ls

s2
ds =

ˆ r

R

e−(M
ε

)s

sn−1
ds.

3. Set v = ηP . We want to show that

v(x) ≤ max{ε,max
|x|=R

P}, (3.24)

for all |x| ≥ R. It is clear that (3.24) holds if sup|x|≥R v ≤ 0, so we may assume that v is

positive somewhere. Since P is bounded and limr→∞ η = 0, we deduce that lim|x|→∞ v = 0.

Thus, either v achieves its maximum on |x| = R, from which (3.24) follows, or v achieves

its maximum at some point x0 with |x0| > R. Then, at x0 we have 0 = ∇v = η∇P +P∇η,

from which we find∇P = −P ∇η
η

. Using this and (3.16), we obtain the estimate

|∇u|2∆v ≥

(
|∇u|2∆η − 2

|∇u|2|∇η|2

η
+ 2f(u)∇u · ∇η

)
P +

P 2|∇η|2

2η
. (3.25)

Since x0 is an interior point at which v attains its maximum, we have ∆v(x0) ≤ 0. Further-

more, we see that P (x0) > 0, since η(x0) > 0 and v(x0) > 0. Therefore, at x0

P |∇u|2

2η
≤ 2
|∇u|2|∇η|2

η
− 2f(u)∇u∇η − |∇u|2∆η. (3.26)
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Now, if |∇u|2(x0) ≤ ε, then, since η ≤ 1 and W ≥ 0, we have v(x) ≤ v(x0) ≤ P (x0) ≤

|∇u|2(x0) ≤ ε for |x| ≥ R and (3.24) holds. Otherwise, since η′ < 0, (3.23) and (3.26)

imply that, at x0,

v = ηP ≤ L
η2

|∇η|2

(
2|∇η|2

η
+
M |∇η|

ε
−∆η

)
. (3.27)

From (3.22) and (3.27), we conclude that v(x0) ≤ ε proving (3.24).

4. Let ε→ 0+ in (3.24). Then

P (x) ≤ max{0,max
|x|=R

P}

for |x| ≥ R. Now, letting R→ 0+ and using (3.15), we see that

P (x) ≤ max{0, P (0)} < δ

for all x ∈ Rn. Since δ > 0 is arbitrary, we find that P ≤ 0, as desired.

This concludes the proof.

The proof of the monotonicity formula now follows from a simple differentiation.

Theorem 3.1.1 (Monotonicity Formula; see [43]). Let n ≥ 1. Let u ∈ C3(Rn) denote a bounded

solution to the problem (3.13). Then,

I(R) = R1−nJBR(u), (3.28)

is a nondecreasing function of R, where JBR(u) is defined by the Ginzburg-Landau energy (3.3).

Proof. By Lemma 3.1.1 (Pohozaev Identity), we have

ˆ
BR

∆u(x · ∇u) dx =
n− 2

2

ˆ
BR

|∇u|2 dx− R

2

ˆ
∂BR

|∇u|2 dSn−1 + r

ˆ
∂BR

u2
r dS

n−1. (3.29)
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Since u solves equation (3.13), we also have

ˆ
BR

∆u(x · ∇u) dx = −
ˆ
BR

W ′(u)(x · ∇u) dx

= −n
ˆ
BR

W (u) dx+R

ˆ
∂BR

W (u) dSn−1 (3.30)

after integrating by parts, where W (u) is as above. Combining (3.29) and (3.30), we obtain

ˆ
BR

(
(n− 2)|∇u|2 + 2nW (u)

)
dx = R

ˆ
∂BR

(
|∇u|2 + 2W (u)

)
dSn−1 − 2R

ˆ
∂BR

u2
r dS

n−1.

(3.31)

Upon differentiation of I given by (3.28), we find

2I ′(R) = −(n− 1)R−n
ˆ
BR

(
|∇u|2 + 2W (u)

)
dx+R1−n

ˆ
∂BR

(
|∇u|2 + 2W (u)

)
dSn−1.

Then, from (3.31) we deduce

2RnI ′(R) =

ˆ
BR

(
2W (u)− |∇u|2

)
dx+ 2R

ˆ
∂BR

u2
r dS

n−1. (3.32)

Applying Proposition 3.1.1 (Modica Estimate) to (3.32), we obtain the result.

After closer inspection, we see that the assumption that u ∈ C3(Rn) is superflous. Indeed, the

computations above show we only require that u ∈ C2(Rn) and f ∈ C1(Rn). Since u ∈ C2(Rn)

satisfies (3.9) and f ∈ C1(R), we obtain the result due to the fact that the partials (∆u)xi =

f ′(u)uxi exist and are continuous for each i = 1 . . . , n. Thus, the claim at the beginning of this

section that the Modica estimate holds for all bounded solutions of (3.9) is valid allowing us to

apply the estimate and resulting monotonicity formula freely in the sequel. For a brief overview of

monotonicity formulae and their applications, the interested reader should see [22].
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3.2 The Conjecture

De Giorgi’s conjecture aims to classify bounded solutions to the Allen-Cahn equation (3.1) and

has close connections with the theory of minimal surfaces. The conjecture, proposed in 1978 by

Enrico De Giorgi, is as follows:

Conjecture 3.2.1 (De Giorgi’s Conjecture). Let n ≥ 1 and let u ∈ C2(Rn) be a bounded solution

of (3.1). Further suppose

uxn > 0 in all of Rn. (3.33)

Then the level sets of u are hyperplanes, at least if n ≤ 8.

Remark 3.2.1. The level sets of u are given by {x ∈ Rn : u(x) = s}, where s ∈ R is a fixed

constant. Thus, De Giorgi’s conjecture states that the x-values mapped to s by u form hyperplanes.

Moreover, they must be parallel since no two level sets can cross. It follows that the level sets share

a common normal, say τ . Supposing τ is of unit length, we see that for each x ∈ Rn u depends

solely on the projection of x along τ , x · τ . It follows that Conjecture 3.2.1 is equivalent to the

requirement that u is one-dimensional, that is, u is a function of one variable.

Proposition 3.2.1. Let n ≥ 1 and u ∈ C2(Rn; [−1, 1]). Assume that u is a one-dimensional

solution to (3.1). Then, there exists a unit vector τ ∈ Rn with τn > 0 and a constant c ∈ R such

that

u(x) = g0(τ · x+ c) (3.34)

for all x ∈ Rn. Here, g0 is given by the formula

g0(s) = tanh

(
s√
2

)
. (3.35)

As justification for Proposition 3.2.1, we observe that the function u(s) = tanh
(

s√
2

)
is the
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unique solution of the ODE problem


u′′ + u− u3 = 0,

u(0) = 0, u(±∞) = ±1,

which increases from −1 to 1. We also note that it is common to see De Giorgi’s conjecture

presented with the additional assumption

lim
xn→±∞

u(x′, xn) = ±1. (3.36)

This additional hypothesis is natural when viewed from the phase transition viewpoint discussed

earlier, as we can view the solutions as passing through "layers" of intermediary states in the xn

direction. Accordingly, it is now customary to call solutions u satisfying (3.36) layer solutions.

Layer solutions will be of primary interest in this project.

The first positive result was given by Ghoussoub and Gui in [31] for dimension n = 2. Am-

brosio and Cabré subsequently proved the conjecture for dimension n = 3 (see [2]). In 2009,

Savin showed in [49] that, for dimensions 4 ≤ n ≤ 8, the conjecture is true under the additional

hypothesis (3.36). Finally del Pino et al. constructed counterexamples for dimensions n ≥ 9

in [47].

Note that the threshold dimension is n = 8. Interestingly, this has a deep connection to the

theory of minimal surfaces and strikingly resembles the Bernstein Conjecture for minimal graphs.

By minimal graphs, we mean graphs

{(x1, . . . , xn) ∈ Rn : xn = F (x1, . . . , xn−1)}

with vanishing mean curvature H in Rn−1.
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By direct computation, one may verify that any hyperplane defined by

F (x1, . . . , xn−1) =
n−1∑
j=1

cjxj + c

has zero mean curvature. Bernstein conjectured much more.

Conjecture 3.2.2 (Bernstein Conjecture). All entire minimal graphs are hyperplanes. Namely, any

entire solution of (3.5) must be an affine function.

The Bernstein conjecture turned out to be true in dimensions n ≤ 8, so that the parallel be-

tween the Bernstein conjecture and De Giorgi’s conjecture is immediate. In particular, an intimate

relationship between De Giorgi’s conjecture and the theory of minimal surfaces was elucidated.

3.2.1 Dimensions n = 2 and n = 3

Here, we present the results of Ambrosio and Cabré in [2] for dimension n = 3 for layer solutions

of the problem (3.37) below, whose work was based on that of Ghoussoub and Gui (see [31]) for

dimension n = 2. Since the same techniques used by Ambrosio and Cabré can be applied to the

case when n = 2, we will present only the work of Ambrosio and Cabré.

In [2], the authors studied bounded solutions of semilinear elliptic equations

−∆u = f(u) in Rn, (3.37)

under the assumption that u is monotone in one direction, say uxn > 0 in Rn. Here, we have

assumed that F ∈ C2(R) satisfies F ′(u) = −f(u). We further note that nonlinearities of this form

include the Allen-Cahn nonlinearity introduced prior. As in the case of the Allen-Cahn equation,

the goal was to establish that u depends only on one variable, or, equivalently, that the level sets of

u are hyperplanes.

The first positive result regarding De Giorgi came in 1998 by Ghoussoub and Gui in [31]. They

too considered the more general nonlinearity f under the hypotheses that u is a bounded solution
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of (3.37) with F ∈ C2(R). Specifically, they showed that when the dimension n = 2, then u is a

function of one variable only.

In [2], Ambrosio and Cabré obtained similar results in dimension n = 3 by generalizing the

methods of Ghoussoub and Gui in [31]. They began by first examining the simpler case when the

solution satisfies the limit assumption (3.36). Throughout this section, we will also assume the

limit (3.36). Generalizations of the below results will then be discussed before switching to the

nonlocal case.

Theorem 3.2.1 (Theorem 1.1 in [2]). Let u be a bounded solution of

−∆u = f in R3 (3.38)

satisfying

ux3 > 0 in R3 and lim
x3→±∞

u(x′, x3) = ±1 for all x′ ∈ R2. (3.39)

Assume that F ∈ C2(R) satisfies F ′(u) = −f(u) and that

F ≥ min{F (−1), F (1)} in (−1, 1). (3.40)

Then the level sets of u are planes. In particular, there exists a unit vector τ ∈ R3 and g ∈ C2(R)

such that

u(x) = g(τ · x) for all x ∈ R3. (3.41)

Moreover,∇u · τ > 0 in R3.

Remark 3.2.2. Note that the direction variable τ on which u depends is not known a priori. How-

ever, if we instead assume that the limits in (3.39) are uniform in x′ ∈ Rn−1, then we are imposing

an a priori choice of the direction τ given by τ · x = xn. Under this assumption, it has been shown

that for every dimension n, that u depends only on the variable xn (see [4,6,31]) and we may write

u = u(xn). This result applies to equation (3.38) for various classes of nonlinearities f which

always include the Ginzburg-Landau model considered earlier.
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To establish Theorem 3.2.1, a significant amount of work needs to be done. We will first

establish some preliminary results and then use them to tackle the theorem.

Recall from the previous section the Modica estimate. That is, if F ≥ 0 in R, then every

bounded solution u of −∆u = f(u) in Rn satisfies the gradient bound

1

2
|∇u|2 ≤ F (u) in Rn. (3.42)

As an example of their uitility, we mention the work of Caffarelli, Garofalo, and Segala in [11].

Here, they not only established this bound to more general equations, but also showed that if

equality occurs in (3.42) for some x ∈ Rn, then the conclusion of De Giorgi’s Conjecture is true.

The proof of De Giorgi’s conjecture in dimension n = 3 proceeds as the proof given by Ghous-

soub and Gui for dimension n = 2. Specifically, Ambrosio and Cabré show that for every coordi-

nate xi, the function σi :=
uxi
uxn

is constant. This is done using the following Liouville-type theorem

for the equation div(ϕ2∇σi) = 0, where ϕ = uxn:

Proposition 3.2.2 (Liouville Theorem; Proposition 2.1 in [2]). Let ϕ ∈ L∞loc(Rn) be a positive

function. Suppose that σ ∈ H1
loc(Rn) satisfies

σ div(ϕ2∇σ) ≥ 0 in Rn (3.43)

in the distributional sense. For every R > 1, assume that

ˆ
BR

(ϕσ)2 dx ≤ CR2, (3.44)

for some constant C independent of R. Then σ is constant.

The following energy estimate will allow us to apply Proposition 3.2.2 when n = 3 to conclude

that σi is constant for each i ∈ {1, 2}.

57



Proposition 3.2.3 (Energy Estimate; Theorem 1.3 in [2]). Let u be a bounded solution of

−∆u = f(u) in Rn,

where F ∈ C2(R) satisfies F ′(u) = −f(u). Assume that

uxn > 0 in Rn and lim
xn→+∞

u(x′, xn) = 1 for all x′ ∈ Rn−1. (3.45)

Then, for every R > 1,

ˆ
BR

(1

2
|∇u|2 + F (u)− F (1)

)
dx ≤ CRn−1 (3.46)

for some constant C independent of R.

Before proving the propositions and theorem, we make some remarks and establish some sim-

ple bounds and regularity results for bounded solutions u ∈ C2(Rn) of (3.37). We then prove the

propositions, and the theorem will follow.

It is important to note that the energy functional in BR,

JR(u) =

ˆ
BR

(1

2
|∇u|2 + F (u)− F (1)

)
dx, (3.47)

has −∆u = f(u) as the Euler-Lagrange equation, which can be checked by a simple differen-

tiation and integration by parts. Recall from the previous section that Modica proved in [43] a

monotonicity formula for the Ginzburg-Landau energy (3.46). Since F ≥ F (1) in R and u is a

bounded solution of ∆u+ F ′(u) = 0, then the quantity

I(R) =
JR(u)

Rn−1
(3.48)

is a nondecreasing function of R. In particular, the monotonicity formula shows that the upper

bound in Proposition 3.2.3 is optimal. To prove this, we will show that I(R) is bounded below by
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a positive constant. Note that if I(R) → 0 as R → ∞, then JR(u) ≡ 0 by the monotonicity of

I(R). We claim that u is constant. Indeed, since JR(u) = 0 for all R > 0, we have

ˆ
BR

(1

2
|∇u|2 + F (u)− F (1)

)
dx = 0.

Since the integrand is nonnegative, we find

1

2
|∇u|2 + F (u)− F (1) = 0

which implies
1

2
|∇u|2 = F (1)− F (0) ≤ 0.

We conclude that |∇u| = 0 and u is constant, a contradiction.

The following estimates will be key. Assuming only that u ∈ C2(Rn) is a bounded solution of

−∆u = f(u) and F ∈ C2(R) satisfies F ′(u) = −f(u), we may apply Proposition 3.1.1 (Modica

Estimate) to see that

|∇u| ∈ L∞(Rn).

Next, we show that u ∈ W 3,p
loc (Rn) for all 1 ≤ p < ∞. Since F ′ is of class C1 and u and ∇u

are bounded, we find that F ′(u) ∈ W 1,p
loc (Rn) and ∇F ′(u) = F ′′(u)∇u. It follows that

∆uxj − F ′′(u)uxj = 0 in the weak sense in Rn,

and this holds for any index j. Since F ′′(u)uxj ∈ L∞(Rn) ⊂ Lploc(Rn), we conclude that uxj ∈

W 2,p
loc (Rn) for each index j implying u ∈ W 3,p

loc (Rn). In particular, Sobolev embedding gives

u ∈ C2,α(Rn) for α ∈ (0, 1). Note that we may obtain the same conclusion assuming u is only

a bounded distributional solution of (3.37) by applying interior W 2,p estimates to ∆u = F ′(u) ∈

L∞(B2(y)) for every y ∈ Rn.

Let us summarize the key points from above. For a bounded (distributional) solution u of
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(3.37), the following hold:

1. u ∈ C2,α(Rn) for α ∈ (0, 1),

2. |∇u| ∈ L∞(Rn), and

3. For each i ∈ {1, 2, . . . , n}, the partials uxi satisfy the linearized equation

∆w − F ′′(u)w = 0 in the weak sense in Rn.

We are ready to prove the propositions. We will begin with Proposition 3.2.2. The proof of

Proposition 3.2.3 will follow and, finally, the theorem. Throughout the proofs, we will use C to

denote different positive constants. The constant C will always be independent of R.

Proof of Proposition 3.2.2. Let ζ := ζ(t) be a C∞ function on R+ with bounded derivative such

that 0 ≤ ζ ≤ 1. Further suppose that

ζ(t) =


1, 0 ≤ t ≤ 1

0, t ≥ 2.

For R > 1, set

ζR(x) := ζ
( |x|
R

)
for x ∈ Rn.

Multiply (3.43) by ζ2
R(x) on both sides and integrate by parts in Rn to find

ˆ
Rn
ζ2
Rϕ

2|∇σ|2 dx ≤ −2

ˆ
Rn
ζRϕ

2σ∇ζR · ∇σ dx

≤ 2

(ˆ
R<|x|<2R

ζ2
Rϕ

2|∇σ|2 dx

) 1
2
(ˆ

Rn
ϕ2σ2|∇ζR|2 dx

) 1
2
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by the Cauchy-Schwarz inequality. Note that

∇ζR(x) = ∇ζ
( |x|
R

)
= ζ ′

( |x|
R

)
· ∇
( |x|
R

)
=

1

R
ζ ′
( |x|
R

)
· x
|x|
,

so that

|∇ζR(x)|2 ≤
|ζ ′
(
|x|
R

)
|2

R2
≤ C

R2

where C is constant. Hence,

(ˆ
R<|x|<2R

ζ2
Rϕ

2|∇σ|2 dx

) 1
2
(ˆ

Rn
ϕ2σ2|∇ζR|2 dx

) 1
2

≤ C

(ˆ
R<|x|<2R

ζ2
Rϕ

2|∇σ|2 dx

) 1
2
(

1

R2

ˆ
B2R

(ϕσ)2 dx

) 1
2

for some constant C. We note that the second integral in the product on the right-hand side can be

truncated to the integral over the ball B2R since, for any R > 0, ζR vanishes for |x| > 2R along

with its gradient. Applying the hypothesis (3.45), we find

ˆ
Rn
ζ2
Rϕ

2|∇σ|2 dx ≤ C

(ˆ
R<|x|<2R

ζ2
Rϕ

2|∇σ|2 dx

) 1
2

(3.49)

≤ C

(ˆ
Rn
ζ2
Rϕ

2|∇σ|2 dx

) 1
2

for some constant C. It follows that

(ˆ
Rn
ζ2
Rϕ

2|∇σ|2 dx

) 1
2

≤ C

so that the integral on the right-hand side of (3.49) tends to zero as R increases to infinity. This

61



gives that ˆ
Rn
ϕ2|∇σ|2 dx = 0.

Since ϕ is strictly positive, we conclude that∇σ = 0 so that σ is constant.

The proof of Proposition 3.2.3 is fundamental and will be discussed in more detail below. Next,

we prove the energy estimate.

Proof of Proposition 3.2.3. Consider the functions

ut(x) := u(x′, xn + t)

defined for x = (x′, xn) ∈ Rn and t ∈ R. Then for each t ∈ R we see that ut satisfies

∆ut − F ′(ut) = 0. (3.50)

Note also that

lim
t→+∞

ut(x) = 1 for all x ∈ Rn. (3.51)

Denoting the derivative of ut(x) with respect to t by ∂tut(x), we have

∂tu
t(x) = uxn(x′, xn + t) > 0 for all x ∈ Rn. (3.52)

Consider the energy of ut in the ball BR = BR(0) defined by

JR(ut) =

ˆ
BR

(1

2
|∇ut|2 + F (ut)− F (1)

)
dx.

We claim that

lim
t→+∞

JR(ut) = 0. (3.53)
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By (3.51), a simple application of the dominated convergence theorem shows that the term

ˆ
BR

(
F (ut)− F (1)

)
dx

tends to zero at t→ +∞. To show that the gradient term tends to zero also, we multiply (3.50) by

ut − 1 and integrate by parts in BR. Doing so, we find that

ˆ
BR

|∇ut|2 dx =

ˆ
∂BR

∂νu
t(ut − 1) dSn−1 −

ˆ
BR

F ′(ut)(ut − 1) dx.

Due to the L∞ bounds established prior, we may apply the dominated convergence theorem to find

that the two integrals on the right-hand side converge to zero as t→ +∞. We conclude that (3.53)

holds.

Next, we compute and bound the derivative of JR(ut) with respect to t. Before doing so, we

point out that the L∞ bounds derived for solutions u of (3.37) apply to the functions ut by (3.50).

Observe that

∂tJR(ut) =

ˆ
BR

∇ut · ∇(∂tu
t) dx+

ˆ
BR

F ′(ut)∂tu
t dx.

Since F ′(ut) = ∆ut, we may integrate by parts in the second term in the sum to find

∂tJR(ut) =

ˆ
∂BR

∂νu
t∂tu

t dSn−1

after cancellations. Using the L∞ bound for∇ut and (3.52), we find

∂tJR(ut) ≥ −C
ˆ
∂BR

∂tu
t dSn−1 (3.54)
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for some constant C independent of R. Thus, for all T > 0 we have

JR(u) = JR(uT )−
ˆ T

0

∂tJR(ut) dt

(By (3.54)) ≤ JR(uT ) + C

ˆ T

0

(ˆ
∂BR

∂tu
t(x) dSn−1

)
dt

= JR(ut) + C

ˆ
∂BR

(ˆ T

0

∂t[u
t(x)] dt

)
dSn−1

= JR(uT ) + C

ˆ
∂BR

(uT − u)(x) dSn−1

(By the L∞ bounds) ≤ JR(uT ) + C|∂BR|

= JR(uT ) + CRn−1.

Letting T → +∞ and appealing to (3.53), we conclude that

JR(u) ≤ CRn−1,

as desired.

Remark 3.2.3. We can actually relax the condition in Proposition 3.2.2 and Proposition 3.2.3 that

F ∈ C2(Rn) to only require F ′ is Lipschitz. For more details, we refer the reader to the original

paper [2].

Having established Proposition 3.2.2 and Proposition 3.2.3, we may now prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Set ϕ = ux3 and, for each i ∈ {1, 2}, consider the functions σi :=
uxi
ux3

which are well defined by (3.39). Moreover, since u ∈ C2,α(Rn), we have enough regularity to

compute∇σi. Doing so, we find

∇σi =
∇uxi · ux3 −∇ux3 · uxi

u2
x3

so that

ϕ2∇σi = ∇uxi · ux3 −∇ux3 · uxi . (3.55)
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Note that the right-hand side of (3.55) belongs to W 1,p
loc (R3) since u ∈ W 3,p

loc (R3) by the bounds

derived earlier. Furthermore, it was shown that both uxi and ux3 satisfy the linearized equation

∆w − F ′′w = 0 (3.56)

in Rn. We claim that

div(ϕ2σi) = 0 in R3 in the weak sense for each i ∈ {1, 2}. (3.57)

Indeed, for i ∈ {1, 2} fixed we have

div(ϕ2σi) = div(∇uxi · ux3 −∇ux3 · uxi)

= div(∇uxi · ux3)− div(∇ux3 · uxi)

= ∆uxiux3 −∆ux3uxi .

Since uxi and ux3 solve (3.56), we may write

∆uxiux3 −∆ux3uxi = F ′′(u)uxiux3 − F ′′(u)uxiux3 = 0.

Since i ∈ {1, 2} is arbitrary, we have proven (3.57). We need to show

ˆ
BR

|∇u|2 dx ≤ CR2

where C is a constant independent of R. Since |uxi |2 ≤ |∇u|2, this will show that

ˆ
BR

(ϕσi)
2 dx ≤ CR2 (3.58)

allowing us to apply Proposition 3.2.2 to the equation given in (3.57).

By assumption, we haveF ≥ min{F (−1), F (1)} in (−1, 1). First, suppose min{F (−1), F (1)} =

65



F (1). Then F (u)− F (1) ≥ 0 in R3, and by Proposition 3.2.3 we obtain

1

2

ˆ
BR

|∇u|2 dx ≤
ˆ
BR

(1

2
|∇u|2 + F (u)− F (1)

)
dx ≤ CR2.

Thus, (3.58) holds. If we assume instead that min{F (−1), F (1)} = F (−1), we may obtain the

same result by replacing u(x′, x3) with u(x′,−x3) and F (v) with F (−v). Then, by Proposition

3.2.2 we see that σi is constant for each i ∈ {1, 2} and we may write uxi = ciux3 for some

constant ci and each i ∈ {1, 2}. We conclude that u is constant along the directions (1, 0,−c1) and

(0, 1,−c2) since

∇u · (1, 0,−c1) = ∇u · (0, 1,−c2) = 0.

Set τ1 = (c1, c2, 1) and note that τ1 is perpendicular to both of the vectors (1, 0,−c1) and (0, 1,−c2)

with∇u = ux3τ . We conclude that u depends solely on one variable. Setting τ := τ1
|τ1| , we see that

u = g(x · τ) where g solves the one-dimensional equation and

∇u · τ = ux3|τ1| > 0,

completing the proof.

The proof above, provided by Cabré and Ambrosio, is essentially the same proof given by

Ghoussoub and Gui in [31] for the extended version of De Giorgi’s conjecture in dimension n = 2.

Note that, in this case, there is no need to apply Proposition 3.2.3 since the condition

ˆ
BR

|∇u|2 dx ≤ CR2

is trivially satisfied by the bound on ∇u. Thus, De Giorgi is resolved, modulo the mild limit

assumption, at least for dimension n = 2 and n = 3.

The authors next sought to establish an extended De Giorgi result for dimensions n = 2, 3

without imposing the limit assumption (3.40).
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Theorem 3.2.2 (Theorem 1.2 in [2]). Let u be a bounded solution of

−∆u = f(u) in R3 (3.59)

satisfying

ux3 > 0 in R3. (3.60)

Assume that F ∈ C2(R) is such that F ′(u) = −f(u) and that

F ≥ min{F (m), F (M)} in (m,M) (3.61)

for each pair of real numbers m < M satisfying F ′(m) = F ′(M) = 0, as well as F ′′(m) ≥ 0 and

F ′′(M) ≥ 0. Then the level sets of u are planes. In particular, there exists τ ∈ R3 and g0 ∈ C2(R)

such that

u(x) = g0(τ · x) for all x ∈ R3. (3.62)

Once again, the goal was to establish the energy estimate9 JR(u) ≤ CR2 for some constant C.

After analyzing the proof of Proposition 3.2.3, it becomes evident that the difficulties arise when

trying to show limt→+∞ JR(ut) = 0 since we longer are imposing a limit condition as xn → +∞.

To overcome this issue, the authors considered the function

u(x′) = lim
x3→+∞

u(x′, x3) where x′ ∈ R2,

which is a solution of the same semilinear equation but in R2. Even more, using a technique de-

veloped by Berestycki, Caffarelli, and Nirenberg in [5], they showed that u is a solution depending

on one variable only. As a consequence, they showed that the energy of u in a two-dimensional

ball of radius R is bounded by CR, hence, that

lim
t→+∞

sup JR(ut) ≤ CR2.

9Note that, in the definition of JR(u), we replace the term F (1) with F (supu).
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Proceeding exactly as in the proof of Proposition 3.2.3, they then established the estimate JR(u) ≤

CR2, thus proving the conjecture under the more general assumptions made on F .

3.2.2 Stable Solutions and Global Minimizers

One natural question to consider is whether one may replace the limit assumption or the mono-

tonicity condition uxn > 0 by other more physical conditions and still obtain De Giorgi type

results. With this in mind, we turn to the notion of global minimizers of the energy (3.2). Global

minimizers of (3.2) are defined precisely below.

Definition 3.2.1 (Global Minimizer). We say that a function u : Rn → R is a global minimizer of

the energy (3.2) if

J(u) ≤ J(u+ φ) for all φ ∈ C1
0(Rn). (3.63)

In other words, u is a global minimizer if u minimizes the energy under any compactly sup-

ported perturbation. Note that we may similarly define global minimizers for the energy (3.3). In

addition, it is well known that imposing both monotonicity (uxn > 0) together with the limit con-

dition (3.36) on solutions u of the problem (3.1) imply that u is a global minimizer of the energy

(3.2) 10.

In [49], Savin proved a rigidity result for global minimizers of (3.2).

Theorem 3.2.3. Let n ≤ 7. If u is a global minimizer of the energy (3.2), then u is a function of

one-variable.

However, for dimensions n ≥ 8, there exist global minimizers of (3.2) that are not one-

dimensional (see [40]). Hence, global minimizers of (3.37) are completely classified.

Another subject of interest is whether De Giorgi type results exist for a class of solutions called

stable solutions.

10See Chapter 7 in L. Dupaigne’s text [20], for example.
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Definition 3.2.2 (Stable Solution). Let f ∈ C1(R) and let Ω be an open subset of Rn, n ≥ 1. A

bounded solution u of the problem

−∆u = f(u) in Ω

is stable if

Ju(φ) :=

ˆ
Ω

(|∇φ|2 − f ′(u)φ2) dx ≥ 0 for all φ ∈ C∞0 (Ω). (3.64)

Remark 3.2.4. Loosely speaking, stable solutions are solutions that recover after compact pertur-

bations. Applying the theory of the maximum principle, one may show that bounded monotone

solutions are stable.

In fact, in order to prove Theorem 3.2.2, Cabré and Ambrosio relied on the following stability

property of u.

Proposition 3.2.4 (Lemma 3.1 in [2]). Let F ∈ C2(R) be such that F ′(u) = −f(u), and let u be

a bounded solution of

−∆u = f(u) in Rn

satisfying

uxn > 0 in Rn.

Then the function

u(x′) = lim
xn→+∞

u(x′, xn) where x′ ∈ Rn−1

is a bounded solution of

−∆u = f(u) in Rn−1.

In addition, there exists a positive function ϕ ∈ W 2,p
loc (Rn−1) for every p <∞ such that

∆ϕ− F ′′(u)ϕ ≤ 0 in Rn−1. (3.65)

As a consequence, if n = 3, then u is a function of one variable only.
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Remark 3.2.5. Applying once more the theory of the maximum principle, one may show that

uxn > 0 and (3.65) lead to (3.64). Thus, Proposition 3.2.4 proves the stability conjecture for

bounded monotone solutions in dimension n = 2. That is, bounded solutions u satisfying uxn > 0

and (3.64) are necessarily one-dimensional.

For the proof of Proposition 3.2.4, we refer the reader to the original paper. Next, we consider

an improvement of the Liouville-type theorem, Proposition 3.2.2.

3.2.3 An Improvement of the Liouville-type Theorem

For future considerations, it is worthwhile to note that a sharper estimate can be formulated than

that given in Proposition 3.2.2. This was done by L. Moschini in [44].

Set

F :=
{
F : R+ → R+ : F is nondecreasing and

∞∑
j=0

1

F (2j+1)
= +∞

}
, (3.66)

and note that F is nonempty since it includes the function logR defined for R ∈ (1,∞). We have

the following theorem.

Theorem 3.2.4 (Theorem 5.1 in [44]). Let ϕ ∈ L∞loc(Rn) be a positive function. Suppose that

σ ∈ H1
loc(Rn) satisfies

σ div(ϕ2∇σ) ≥ 0 in Rn (3.67)

in the distributional sense, n ≥ 1. Further suppose

lim sup
R→+∞

1

R2F (R)

ˆ
BR

(ϕσ)2 dx = C (3.68)

where C is constant and F ∈ F . Then σ is constant.

Remark 3.2.6. Observe that setting F (R) ≡ 1 in (3.68) yields Proposition 3.2.2 above.
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Proof. Suppose σ satisfies (3.67). Then,

div(σϕ2∇σ) = ϕ2|∇σ|2 + σ div(ϕ2∇σ)

≥ ϕ2|∇σ|2. (3.69)

Also, after two applications of the Cauchy-Schwarz inequality, we find

ˆ
∂BR

σϕ2〈∇σ, ν〉 dSn−1 ≤
ˆ
∂BR

|σ|ϕ2|∇σ| dSn−1

≤

(ˆ
∂BR

ϕ2|∇σ|2 dSn−1

) 1
2
(ˆ

∂BR

(ϕσ)2 dSn−1

) 1
2

, (3.70)

where ν is the radial unit normal on ∂BR. Set

D(R) :=

ˆ
BR

ϕ2|∇σ|2 dx.

Thus, integrating (3.69) in BR, we have

ˆ
BR

ϕ2|∇σ|2 dx+

ˆ
BR

σ div(ϕ2∇σ) dx =

ˆ
∂BR

σϕ2〈∇σ, ν〉 dSn−1

≥
ˆ
BR

ϕ2|∇σ|2 dx,

where we have integrated by parts in the first integral. Observe that

ˆ
∂BR

σϕ2〈∇σ, ν〉 dSn−1 ≤ D′(R)
1
2

(ˆ
∂BR

(ϕσ)2 dSn−1

) 1
2

(3.71)

by (3.70). Furthermore, since ϕ2 > 0, if σ is not identically constant, then there exists R0 > 0

such that D(R) > 0 for all R ≥ R0. In addition,

d

dR

(
D−1(R)

)
= −D−2(R) ·D′(R).
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By (3.71),

− d

dR

(
D−1(R)

)
=
D′(R)

D2(R)

≥

(ˆ
∂BR

(ϕσ)2 dSn−1

)−1

. (3.72)

Let r2 > r1 > R0 and integrate from r1 to r2 above to get

1

D(r1)
− 1

D(r2)
= −
ˆ r1

r1

d

dR

(
1

D(R)

)
dR

≥
ˆ r2

r1

(ˆ
∂BR

(ϕσ)2 dSn−1

)−1

dR (3.73)

for all r1 > r2 > R0. We claim

(r2 − r1)2

(ˆ r2

r1

(ˆ
∂BR

(ϕσ)2 dSn−1

)
dR

)−1

≤

(ˆ r2

r1

(ˆ
∂BR

(ϕσ)2 dSn−1

)−1

dR

)
(3.74)

holds. Indeed, the Cauchy-Schwarz inequality yields, for positive and integrable f : Rn → R,

(ˆ r2

r1

dR

)2

=

(ˆ r2

r1

f(R)
1
2f(R)−

1
2 dR

)2

≤

(ˆ r2

r1

f−1(R) dR

)
·

(
f(R) dR

)
. (3.75)

Setting

f(R) =

ˆ
∂BR

(ϕσ)2 dSn−1,

72



we obtain (3.74) by (3.75). Now, applying (3.74) and (3.75), we find

1

D(r1)
− 1

D(r2)
≥
ˆ r2

r1

(ˆ
∂BR

(ϕσ)2 dSn−1

)−1

dR

≥ (r2 − r1)2

(ˆ r2

r1

(ˆ
∂BR

(ϕσ)2 dSn−1

)
dR

)−1

= (r2 − r1)2

(ˆ
Br2\Br1

(ϕσ)2 dx

)−1

. (3.76)

For each j = 0, 1, . . . , n−1, set r2,j := 2j+1r∗ and r1,j := 2jr∗ where r∗ is chosen so that r∗ > R0.

Then (3.76) gives

r2
2,j

4

(ˆ
Br2,j

(ϕσ dx

)−1

≤ r2
1,j

(ˆ
Br2,j \Br1,j

(ϕσ)2 dx

)−1

≤ 1

D(r2,j)
− 1

D(r1,j)
.

Note that
1

D(r∗)
≥ 1

D(r∗)
− 1

D(r2,n−1)
,

since 1
D(2nr∗)

> 0. Summing over j above and applying (3.68), we find

1

D(r∗)
− 1

D(r2,n−1)
≥ 1

4C

n−1∑
j=0

1

F (r2,j)
. (3.77)

Since F ∈ F , we see that F (r2,j) ≤ F (2j+j0+1) if j0 is such that r∗ ≤ 2j0 . Thus, the sum on

the right-hand side of (3.77) diverges as n → ∞. We conclude that D(r∗) = 0, for otherwise the

sum on the right-hand side of (3.77) is bounded. It follows that D(r∗) = 0 for all r∗ > R0. Since

ϕ2 > 0, we see that |∇σ| = 0 so that σ is constant.

From Theorem 3.2.4, we may obtain the following corollary which is proven by taking F (R) =

logR for R > 1 in (3.68).
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Corollary 3.2.1 (Corollary 5.3 in [44]). Let ϕ ∈ L∞loc(Rn) be a positive function. Suppose that

σ ∈ H1
loc(Rn) satisfies

σ div(ϕ2∇σ) ≥ 0 in Rn (3.78)

in the distributional sense, n ≥ 1. Further suppose that for every R > 1

ˆ
BR

(ϕσ)2 dx ≤ CR2 logR (3.79)

for some constant C. Then σ is constant.

Proof. Take F (R) := logR defined for R > 1. Then F is nondecreasing in R. Furthermore,

∞∑
j=0

1

F (2j+1)
=
∞∑
j=0

1

log(2j+1)

which diverges by the ratio test, for example. Then F ∈ F and Theorem 3.2.3 gives the result.

Remark 3.2.7. An interesting open problem is to either prove or to give a counterexample to

Theorem 3.2.4 when F (R) = Rn−3, thus R2F (R) = Rn−1, and 4 ≤ n ≤ 8. It is known that

counterexamples exist for this choice of F when n ≥ 9 (see [2]). Further counterexamples exist

when F (R) = Rn−2 for any n ≥ 3 (see [3]). When n ≥ 7, a different counterexample to this case

was given explicitly by Ghoussoub and Gui in [31] (see Proposition 2.8).

Unfortunately, the sharpness of the estimate (3.44) in higher dimensions is improved only by

a factor of logR. As a result, we still face complications when trying to extend the proof of De

Giorgi to dimensions 4 ≤ n ≤ 8 via the techniques employed by Ghoussoub-Gui and Ambrosio-

Cabré, since, to extend to higher dimensions using the same techniques, one must obtain additional

multiples of R in the estimate (3.79). Though Theorem 3.2.4 and, hence, Corollary 3.2.1 are not

immediately useful, a similar Liouville-type theorem will be important in Chapter 4. We thereby

include the proofs above as instruction for what follows.
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3.3 Current Directions

From the above considerations, we see that De Giorgi’s conjecture is entirely resolved apart from

the limit assumption imposed by Savin in dimensions 4 ≤ n ≤ 8. We also note that De Giorgi type

results have been obtained in the systems case (see, for instance, Fazly and Ghoussoub in [23]). As

shown prior, the stability conjecture has been proven true for dimension n = 2 by Ambrosio and

Cabré (see [2]). In dimensions n ≥ 8, however, the conjecture has been shown to be false (see [45]

and [40]). Thus, the stability conjecture remains wide open for dimensions 3 ≤ n ≤ 7. Recently,

authors have also considered the problem of how one classifies unstable solutions (i.e. solutions

that are not stable), for example, those having finite Morse index (see [14]).

Though the topics above constitute fascinating avenues for future study, these considerations

are outside of the scope of this project. For a recent overview of related open problems, we refer

the reader to [14]. For the remainder of this project, we focus our attention on the extension of De

Giorgi’s conjecture to the nonlocal operator introduced prior, the fractional Laplacian (−∆)s.
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CHAPTER 4: THE FRACTIONAL DE GIORGI CONJECTURE

Our goal in this final chapter is to lay out what is known for the fractional De Giorgi conjecture,

that is, the counterpart to Conjecture 3.2.1 for the nonlocal operator (−∆)s. We will again focus

on the lower dimensional cases. The cases dimension n = 2 with s ∈ (0, 1) and n = 3 with

s ∈ [1
2
, 1) will be proven in full detail for a particular class of solutions called layer solutions using

the methods of Cabré et al. developed in a series of papers. The case dimension n = 2 and general

s without the limit assumption was proved by Sire and Valdinoci in [57]. We will only provide an

overview of the case n = 3 with s ∈ (0, 1
2
), as it is based on the work of Dipierro et al. in [19]

which requires knowledge of minimal surface theory. We will also summarize what is known for

fractional stable solutions and fractional global minimizers. At the end of the chapter, we prove

nonlocal versions of the Pohozaev identity, Modica estimate, and monotonicity formula introduced

at the beginning of Chapter 3. To close, we discuss current directions for the fractional De Giorgi

conjecture and related topics, as well as problems of interest to the author for future study.

Let 0 < s < 1. The fractional Allen-Cahn equation is given by

(−∆)su = u− u3 in Rn, (4.1)

and is the Euler-Lagrange equation for the energy functional

Js,Rn(u) :=
C(n, s)

2

ˆ ˆ
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy +

1

4

ˆ
Rn

(1− u2)2 dx (4.2)

As in the local case, we may consider the more general equation

(−∆)su = f(u) in Rn, (4.3)

where F (u) =
´ 1

u
f (i.e. F ′(u) = −f(u)) and F ≥ 0 in R, with F (±1) = 0 and F > 0 in (−1, 1)
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(e.g. F is a double-well potential). In this setting, the associated energy is

Js,Rn(u) :=
C(n, s)

2

ˆ ˆ
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy +

ˆ
Rn
F (u(x)) dx (4.4)

Mentioned earlier, nonlocal equations arise in many pure and applied fields including differ-

ential geometry (fractional minimal surfaces), probability (Levy processes), and physics (nonlocal

phase transitions, image processing, and general relativity). In this setting, De Giorgi’s conjecture

can be stated precisely as follows:

Conjecture 4.0.1 (Fractional De Giorgi Conjecture). Let u be a bounded solution of (4.1) which

is monotone in one direction, say uxn > 0. Then u is a function of one variable.

Before we continue, let us recall the extension problem presented in Chapter 2 and discuss

some preliminaries. By the results in Chapter 2, we observe that problem (4.3) is equivalent to the

following boundary value problem in Rn+1
+

div(ya∇v) = 0 in Rn+1
+ ,

−ds limy→0+ yavy = f(v) on ∂Rn+1
+ ,

(4.5)

to which we associate the energy functional

J+
s,CR

(w) := ds

ˆ
CR

1

2
ya|∇w|2 dx dy +

ˆ
BR×{0}

F (w(x, 0)) dx. (4.6)

The domain CR is the cylinder in the upper half-space given by CR := BR × (0, R). We call the

solution v of (4.5) the s-extension of u in Rn+1
+ .

As before, Rn+1
+ := {(x, y) ∈ Rn+1 : x ∈ Rn and y > 0}. Then, we see that ∂Rn+1

+ = Rn×{0}

which we view as Rn embedded in Rn+1. We take a = 1−2s where s ∈ (0, 1) and v(x, 0) := u(x)

on ∂Rn+1
+ , n ≥ 1. Weak solutions for the problem (4.5) are defined below.
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Definition 4.0.1 (Weak Solution). Consider the problem


div(ya∇v) = 0 in CR,

− limy→0+ yavy = h on BR × {0}.
(4.7)

Given R > 0 and a function h ∈ L1(BR ×{0}), we say that v is a weak solution of (4.7) provided

ya|∇v|2 ∈ L1(CR) (4.8)

and ˆ
CR

ya∇v∇φ dx dy −
ˆ
BR×{0}

hφ dx = 0 (4.9)

for all φ ∈ C1(CR) such that φ ≡ 0 on ∂CR.

We may define weak solutions on other domains in a similar manner.

Remark 4.0.1. Let us comment on the regularity of solutions to the problem (4.5). By Lemma

D.1.1 in Appendix D (Lemma 4.4 in [9]), weak solutions to (4.5) are Cβ(Rn+1
+ ) for some β ∈

(0, 1). In general, solutions to (4.5) have no further regularity in the y variable. For example,

the function (x, y) 7→ y2s is a weak solution to (4.5) with f identically constant even though it is

unbounded. Note that the trace v(x, 0) on ∂Rn+1
+ of any bounded weak solution of (4.5) belongs

to C2,β(Rn) (see Lemma D.1.1 also).

By Theorem 2.3.1, we find that

(−∆)su(x) = (−∆)sv(x, 0) = −ds lim
y→0+

yavy (4.10)

where ds is a positive constant depending only on s. In fact, comparing with (2.55), we see that

ds =
22s−1Γ(s)

Γ(1− s)
. (4.11)

As mentioned in the opening of the chapter, we will be concerned with certain bounded solu-
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tions of (4.3) called layer solutions. These are bounded, monotone increasing solutions u connect-

ing −1 to 1 at ∓∞ in one of the coordinates xi, i = 1, . . . , n. In [9], Cabré and Sire proved a

Modica-type estimate1 which allowed them to derive a necessary condition on the nonlinearity f

for the existence of a layer solution in R.

Theorem 4.0.1 (Theorem 2.2(i) in [9]). Let s ∈ (0, 1) and f ∈ C1,α(R) for some α > max{0, 1−

2s}. Assume that there exists a layer solution u of

(−∂2
xx)

su = f(u) in R, (4.12)

that is, u is a solution of (4.12) satisfying

u′ > 0 in R and lim
x→±∞

u(x) = ±1.

Then,

F ′(−1) = F ′(1) = 0 (4.13)

and

F > F (−1) = F (1) in (−1, 1). (4.14)

After establishing the necessary conditions (4.13) and (4.14) for the existence layer solutions

to (4.12), Cabré and Sire proved in [10] that these conditions are sufficient.

Theorem 4.0.2 (Existence of Layer Solutions; Theorem 2.4 in [10]). Let f ∈ C1,α(R) with α >

max{0, 1 − 2s}, where s ∈ (0, 1). Then there exists a solution u of (4.12) such that u′ > 0 in R

and limx→±∞ u(x) = ±1 if and only if (4.13) and (4.14) are satisfied. In addition, if f ′(−1) < 0

and f ′(1) < 0, then this solution is unique up to translations.

Combining Theorem 4.0.1 and Theorem 4.0.2, we see that one-dimensional layer solutions of

(4.12) are completely classified.

1See Theorem 4.3.1.
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Remark 4.0.2. We point out that the uniqueness of a layer solution also holds for any nonlinearity

f of class C1([−1, 1]) satisfying f ′(−1) < 0 and f ′(1) < 0. In fact, by following the proof of

Theorem 2.4 in [10], one finds that we only need f to be Lipschitz in [−1, 1] and nonincreasing

in a neighborhood of −1 and of 1. Moreover, we see that if f is odd and f ′(±1) < 0, then the

solution is odd with respect to some point. That is, u(x+ c) = −u(−x+ c) for some c ∈ R.

Let us introduce some important definitions to be used in the sequel and make precise some of

the notions mentioned above.

Definition 4.0.2. Let H1(Ω, ya) denote the space of functions w : Ω→ R such that yaw ∈ H1(Ω)

1. We say that a bounded Cα
loc(R

n+1
+ )∩H1

loc(R
n+1
+ , ya) function u is a global minimizer of (4.3)

if for all R > 0,

J+
s,CR

(u) ≤ J+
s,CR

(w) (4.15)

for every w ∈ H1(CR, y
a) such that u ≡ w in ∂CR \ {y = 0}.

2. We say that a bounded function v is a global minimizer of (4.5) if its trace v(x, 0) = u(x)

on ∂Rn+1
+ is a global minimizer of (4.3).

3. Assume that v ∈ Cα(Rn+1
+ ) for some α ∈ (0, 1) satisfying −1 < v < 1 in Rn+1

+ and such

that, for all R > 0, v ∈ H1(CR, y
a). We say that v is a local minimizer of problem (4.5) if

J+
s,CR

(v) ≤ J+
s,CR

(v + ξ) (4.16)

for every R > 0 and every ξ ∈ C1(Rn+1
+ ) having compact support in CR ∪ (BR × {0}) and

such that −1 ≤ v + ξ ≤ 1 in CR.

4. We say that a bounded function u is a layer solution of (4.3) if u is a solution, it is monotone

increasing in one of the coordinates, say uxn > 0 in Rn, and

lim
xn→±∞

u(x′, xn) = ±1 for each x′ ∈ Rn−1. (4.17)
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5. A bounded function v is a layer solution of (4.5) if its trace v(x, 0) = u(x) on ∂Rn+1
+ is a

layer solution of (4.3).

Note that layer solutions are global minimizers, while local minimizers are not necessarily

global minimizers. In addition, we would like to point out that some authors consider the problem


div(ya∇v) = 0 in Rn+1

+ ,

−(1 + a) limy→0+ yavy = f(v) on ∂Rn+1
+ .

(4.18)

in lieu of problem (4.5). Replacing f with (1+a)d−1
s f in (4.18) gives the equivalency of problems

(4.18) and (4.5). To be consistent with the literature, we will sometimes consider (4.18) instead of

(4.5). In each subsequent section, we will state clearly which formulation of the problem is being

used. When considering problem (4.18), we will write

J+
s,CR

(w) :=

ˆ
CR

1

2
ya|∇w|2 dx dy +

1

1 + a

ˆ
BR×{0}

F (w(x, 0)) dx. (4.19)

in place of (4.6). This will cause no difficulties since we may easily switch between the two via

the mapping f 7→ (1 + a)d−1
s f and vice versa.

Naturally, when trying to tackle the nonlocal De Giorgi conjecture, one will wonder if Propo-

sition 3.2.2 and Proposition 3.2.3 can be extended to the nonlocal operator (−∆)s. The following

results, obtained by Cabré and Sire in [9] and Cabré and Cinti in [7] via the extension problem,

show that they can.

4.1 A Nonlocal Liouville-type Theorem and Nonlocal Energy Estimate via

the Extension Problem

Our goal in this section is to prove nonlocal versions of Proposition 3.2.2 and Proposition 3.2.3 via

the extension problem in order to obtain De Giorgi type results for the fractional Laplacian. We

first consider the nonlocal analogue to Proposition 3.2.2, proven by X. Cabré and Y. Sire in [9].
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Proposition 4.1.1 (Liouville Theorem; Theorem 4.10 in [9]). Let ϕ ∈ L∞loc(R
n+1
+ ) be a positive

function. Suppose that σ ∈ H1
loc(R

n+1
+ , ya) is such that


−σ div(yaϕ2∇σ) ≤ 0 in Rn+1

+

− limy→0+ σyaσy ≤ 0 on ∂Rn+1
+

(4.20)

in the weak sense. Assume that for every R > 1,

ˆ
CR

ya(σϕ)2 dx dy ≤ CR2 (4.21)

for some constant C independent of R. Then σ is constant.

As one might imagine, a difficulty that often arises when considering problems for (−∆)s via

the extension problem is dealing with the boundary terms that inevitably show up after integration

by parts. The proof of the Liouville-type theorem provides us with a perfect example.

Proof of Proposition 4.1.1. Let ζ := ζ(t) be the nonnegative C∞ function defined as in the proof

of Proposition 3.2.2. For R > 1 and (x, y) ∈ Rn+1
+ , set ζR := ζ

(
r
R

)
where r = |(x, y)|.

Multiplying the first expression in (4.20) by ζ2
R and integrating by parts in Rn+1

+ , we find

ˆ
Rn+1

+

yaζ2
Rϕ

2|∇σ|2 dx dy − lim
y→0+

ˆ
∂Rn+1

+

ζ2
Rϕ

2σya∂νσ dx

≤ −2

ˆ
Rn+1

+

yaζRϕ
2σ∇ζR∇σ dx dy, (4.22)

where ν is the outer unit normal to Rn+1
+ . Since ν = (0, 0, . . . ,−1), we find

lim
y→0+

ˆ
∂Rn+1

+

ζ2
Rϕ

2σya∂νσ dx = − lim
y→0+

ˆ
∂Rn+1

+

ζ2
Rϕ

2σyaσy dx ≤ 0
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This allows us to drop the boundary term in in (4.22) to conclude

ˆ
Rn+1

+

yaζ2
Rϕ

2|∇σ|2 dx dy ≤ −2

ˆ
Rn+1

+

yaζRϕ
2σ∇ζR∇σ dx dy.

Then the Cauchy-Schwarz inequality gives

ˆ
Rn+1

+

yaζ2
Rϕ

2|∇σ|2 dx dy ≤ 2

(ˆ
Rn+1

+ ∩{R<r<2R}
yaζ2

Rϕ
2|∇σ|2 dx dy

) 1
2

·

(ˆ
Rn+1

+

yaϕ2σ2|∇ζR|2 dx dy

) 1
2

≤ C

(ˆ
Rn+1

+ ∩{R<r<2R}
yaζ2

Rϕ
2|∇σ|2 dx dy

) 1
2

·

(
1

R2

ˆ
CR

ya(ϕσ)2 dx dy

) 1
2

,

for some constant C. Thus, by (4.21) we have

ˆ
Rn+1

+

yaζ2
Rϕ

2|∇σ|2 dx dy ≤ C

(ˆ
Rn+1

+ ∩{R<r<2R}
yaζ2

Rϕ
2|∇σ|2 dx dy

) 1
2

, (4.23)

where C is constant. It follows that
´
Rn+1

+
yaζ2

Rϕ
2|∇σ|2 dx dy ≤ C and, letting R → ∞, we

conclude that
´
Rn+1

+
yaϕ2|∇σ|2 dx dy ≤ C so that the right-hand side of (4.23) goes to zero in the

limit as R→ +∞. Therefore, we have
´
Rn+1

+
yaϕ2|∇σ|2 dx dy = 0 so that σ is constant.

To prove a nonlocal version of Proposition 3.2.3 via the extension problem, the main difficulty

to overcome is, once again, the boundary terms that appear after integration by parts. Moreover,

care must be taken when dealing with the fractional exponent s ∈ (0, 1). Using the identities

sΓ(s) = Γ(s+ 1) and (1− s)Γ(1− s) = Γ(2− s), one may easily show that ds
2s−1 → 1 as s ↓ 0 and

ds
2(1−s) → 1 as s ↑ 1. Hence, the constant ds blows up as s ↓ 0 and tends linearly to zero as s ↑ 1.
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Let us state the main estimates.

Proposition 4.1.2 (Nonlocal Energy Estimate; Theorem 2.1 in [8]). Let f ∈ C1,α(Rn) with α >

max{0, 1−2s}. Suppose F satisfies (4.13) and (4.14) above. Suppose also that u is a layer solution

of (4.3). Let v be the s-extension of u in Rn+1
+ , that is, v solves (4.5). Given any s ∈ (0, 1), choose

s0 ∈ (0, 1
2
) so that s0 < s < 1. Then v satisfies the following estimates depending on s:

J+
s,CR

(v) ≤ C

1− 2s
Rn−2s if s0 < s <

1

2
(4.24)

J+
s,CR

(v) ≤ CRn−1 logR if s =
1

2
(4.25)

J+
s,CR

(v) ≤ C

2s− 1
Rn−1 if

1

2
< s < 1 (4.26)

for any R > 2. The constant C depends only on n, s0, and ‖f‖C1,α([−1,1]).

The following lemmata are key to the proof of Proposition 4.1.2.

Lemma 4.1.1. Every bounded solution of (4.5) satisfies

|∇xv(x, y)| ≤ cs for all x ∈ Rn, y ≥ 0 (4.27)

|∇v(x, y)| ≤ cs
y

for all x ∈ Rn, y > 0 (4.28)

|yavy(x, y)| ≤ cs for all x ∈ Rn, y > 0, (4.29)

where, in each case, the constant cs depends only on s and is uniformly bounded in s away from

zero. In addition, if we define the translates

vt(x, y) := v(x′, xn + t, y),

then

lim
t→∞
|∇vt(x, y)| = 0. (4.30)

Proof. The estimates (4.27), (4.28), and (4.29) are immediate consequences of Proposition D.1.2.
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On the other hand, (4.30) is a consequence of (D.8) and (D.9) in Proposition D.1.3.

Lemma 4.1.2. Let u be a layer solution of (4.5) and v its s-extension in Rn+1
+ . Then v ∈ C∞(Rn+1

+ )

and vxn > 0 in Rn+1
+ .

Proof. Since v solves div(ya∇v) = 0 in Rn+1
+ , we see that v ∈ C∞(Rn+1

+ ) by standard elliptic

regularity. For the second claim, we observe that vxn(x, 0) = uxn > 0 for every x ∈ Rn. Since v

is the s-extension of u in Rn+1
+ , vxn is bounded and continuous in Rn+1

+ by Proposition D.1.1. In

addition, vxn(x, y) = (uxn ∗Ps,y)(x) by Theorem 2.2.1. Letting |x| → ∞, we see that vxn(x, y)→

0 pointwise for y > 0. Hence, we may apply the maximum principle to show that vxn > 0 in all of

Rn+1
+ .

We may now prove Proposition 4.1.2. Note that in the computations that follow, and the re-

mainder of this chapter, the set BR will always denote the ball of radius R centered at the origin in

Rn (i.e. BR × {0} in Rn+1
+ ).

Proof of Proposition 4.1.2. Consider the translates

vt(x, y) := v(x′, xn + t, y)

defined for (x, y) = (x′, xn, y) ∈ Rn+1
+ and t ≥ 0. Then, for all t ≥ 0, vt satisfies (4.5) by

translation invariance of (−∆)s. Thus, the a priori bounds for v above hold for vt for each t ≥ 0.

Furthermore, limt→∞ |∇vt(x, y)| = 0 by Lemma 4.1.1. Then,

lim
t→∞

[|vt(x, y)− 1|+ |∇vt(x, y)|] = 0 (4.31)

for all x ∈ Rn and y ≥ 0 by the limit condition on u (hence, on the vt). Moreover, vxn > 0 in

Rn+1
+ by Lemma 4.1.2. Differentiating vt with respect to t, we find

∂tv
t(x, y) = vxn(x′, xn + t, y) > 0 (4.32)
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for all x = (x′, xn) ∈ Rn, x′ := (x1, . . . , xn−1) ∈ Rn−1, and y ≥ 0. Then a direct application of

(4.31) and the dominated convergence theorem shows that

lim
t→∞

J+
s,CR

(vt) = 0. (4.33)

Our goal is to compute and bound ∂tJ+
s,CR

(vt). Differentiating J+
s,CR

(vt) with respect to t, we find

∂tJ
+
s,CR

(vt) = ds

ˆ
CR

ya∇vt∇(∂tv
t) dx dy+

ˆ
BR×{0}

F ′(vt(x, 0))∂tv
t(x, 0) dx := I1 +I2. (4.34)

Consider the unit outer normal ν to the lateral boundary of CR. Computing, we see that ν(x, y) =

(x1,...,xn,0)
R

. Thus, on the lateral boundary of CR, we have ∂νvt = ∇vt(x, y) · ν(x, y) = ∇xv
t(x, y).

On the top and bottom of the cylinder CR, the unit outer normal is the upward pointing and down-

ward pointing unit vector in the y direction, respectively. Then, integrating by parts in I1 and

noting that vt solves (4.5), we find

I1 =− ds lim
y→0+

ˆ
BR×{0}

yavty∂tv
t dx+

ds

ˆ R

0

ya dy

ˆ
∂BR

∇xv
t∂tv

t dSn−1 + ds

ˆ
BR×{R}

yavy∂tv
t dx.

Since

−ds lim
y→0+

ˆ
BR×{0}

yavty∂tv
t dx = −

ˆ
BR×{0}

F (vt(x, 0))∂tv
t dx,

we conclude that

∂tJ
+
s,CR

(vt) = ds

ˆ R

0

ya dy

ˆ
∂BR

∇xv
t∂tv

t dSn−1 + ds

ˆ
BR×{R}

yavy∂tv
t dx

≥ −Cds
ˆ 1

0

ya dy

ˆ
∂BR

∂tv
t dSn−1−

Cds

ˆ R

1

ya−1 dy

ˆ
∂BR

∂tv
t dSn−1 − CdsR−2s

ˆ
BR×{R}

∂tv
t dx, (4.35)

for some constant C, where we have split the integral over the cylinder into two integrals, one from
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height 0 to 1 and one from height 1 toR, and applied the gradient bounds (4.27), (4.28), and (4.29).

In addition, the constant C is bounded away from zero. Then, for every T > 0,

J+
s,CR

(v) = J+
s,CR

(vT )−
ˆ T

0

∂tJ
+
s,CR

(vt) dt

(By (4.35)) ≤ J+
s,CR

(vT ) + Cds

ˆ T

0

dt

ˆ 1

0

ya dy

ˆ
∂BR

∂tv
t dSn−1+

Cds

ˆ T

0

dt

ˆ R

1

ya−1 dy

ˆ
∂BR

∂tv
t dSn−1+

CdsR
−2s

ˆ T

0

dt

ˆ
BR×{R}

∂tv
t dx

= J+
s,CR

(vT ) + Cds

ˆ
∂BR

dSn−1

ˆ 1

0

ya dy

ˆ T

0

∂t[v
t] dt+

Cds

ˆ
∂BR

dSn−1

ˆ R

1

ya−1 dy

ˆ T

0

∂t[v
t] dt+

CdsR
−2s

ˆ
BR×{R}

dx

ˆ T

0

∂t[v
t] dt

= J+
s,CR

(vT ) + Cds

ˆ
∂BR

dSn−1

ˆ 1

0

ya(vT − v0) dy+

Cds

ˆ
∂BR

dSn−1

ˆ R

1

ya−1(vT − v0) dy+

CdsR
−2s

ˆ
BR×{R}

(vT − v0) dx

(By the L∞ bounds) ≤ J+
s,CR

(vT ) + CdsR
n−1

(ˆ 1

0

y1−2s dy +

ˆ R

1

y−2s dy

)
+ CdsR

n−2s

= J+
s,CR

(vT ) +
Cds

2(s− 1)
Rn−1 + CdsR

n−2s

ˆ 1

1
R

ρ−2s dρ+ CdsR
n−2s,

where we have applied the change of variables y 7→ ρ
R

in the second integral in the sum above.

Using the fact that ds ≈ 2(s− 1) as s ↑ 1 and the fact that s0 < s < 1, we may write

J+
s,CR

(v) ≤ J+
s,CR

(vT ) + CRn−1 + C · 2(1− s)Rn−2s

ˆ 1

1
R

ρ−2s dρ+ C · (1− s)Rn−2s. (4.36)

We conclude the proof by considering the three cases individually.
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• s0 < s < 1
2
: In this case,

ˆ 1

1
R

ρ−2s dρ =
1

1− 2s
(R2s−1 − 1).

Combining this with the fact that 1
1−2s

> 1, n − 2s > n − 1, and R > 2, we obtain from

(4.36) the estimate

J+
s,CR

(v) ≤ J+
s,CR

(vT ) + C
Rn−2s

1− 2s
.

• s = 1
2
: We have ˆ 1

1
R

ρ−2s dρ = logR.

Since 2 logR > 1 for all R > 2, (4.36) gives

J+
s,CR

(v) ≤ J+
s,CR

(vT ) + CRn−1 logR.

• 1
2
< s < 1: We have ˆ 1

1
R

ρ−2s dρ =
1

2s− 1
(1−R2s−1).

Since, in this case, we also have n− 2s < n− 1 and 1
2s−1

> 1, we find

J+
s,CR

(v) ≤ J+
s,CR

(vT ) + C
Rn−1

2s− 1
.

Taking the limit as T →∞ in each case and applying (4.33), we obtain the estimates (4.24), (4.25),

and (4.26). This concludes the proof.

The estimates in Proposition 4.1.2 are sharp in the sense that they are bounded below by the

same quantity multiplied by a smaller positive constant. To see this, note that, for every bounded

solution u of (4.3), the energy is also bounded below by C1R
n−2s for some constant C1 > 0

and s ∈ (0, 1
2
) as a consequence of the nonlocal monotonicity formula in Theorem 4.3.2 below.

When s = 1
2
, sharpness follows from the fact that the estimate is sharp in one dimension, hence,
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for layer solutions (see Section 2.1 in [7]). For 1
2
< s < 1, we may apply Fubini’s theorem to

obtain boundedness from below. Indeed, let v be a one-dimensional layer solution of (4.5). Then

v := v(x · τ, y) where τ ∈ Rn is a unit vector, so for R > 1 we see that

J+
s,CR

(v) ≥ C2J
+
s,(−R,R)n×(0,R)(v)

= C2ds

ˆ
(−R,R)n×(0,R)

1

2
ya|∇v(xn, y)|2 dx dy +

ˆ
(−R,R)n

F (v(xn, 0)) dxn

= C2R
n−1

(
ds

ˆ R

0

ya dy

ˆ R

−R

1

2
|∇v(xn, y)|2 dxn +

ˆ R

−R
F (v(vn, 0)) dxn

)

≥ C2R
n−1

(
ds

ˆ 1

0

ya dy

ˆ 1

−1

1

2
|∇v(xn, y)|2 dxn

)

= C2R
n−1.

since ∇v is bounded and integrable in Rn+1
+ and F ≥ 0, the positive constant C2 depending on n

and s. Hence, J+
s,CR
≥ C2R

n−1 for 1
2
< s < 1.

Now that we have nonlocal versions of Proposition 3.2.2 and Proposition 3.2.3, the fractional

De Giorgi conjecture is within reach, at least for dimensions n = 2 and n = 3. However, before

we prove the conjecture in these cases, we discuss a generalization of the estimates in Proposition

4.1.2.

It is natural to wonder whether the estimates in Proposition 4.1.2 can be extended to a more

general class of solutions. We can, in fact, by considering global minimizers of (4.3). For the

proposition that follows, we introduce the constant cu, dependent on u, given by

cu := min{F (s) : inf
Rn
u ≤ r ≤ sup

Rn
u}.

The following proposition holds.
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Proposition 4.1.3 (Theorem 1.2 in [7]). Let f ∈ C1,α(Rn) with α > max{0, 1− 2s}, and let u be

a bounded global minimizer of (4.3). Let v be the s-extension of u in Rn+1
+ . Then, for all R > 2,

J cus,CR := ds

ˆ
CR

1

2
ya|∇v|2 dx dy +

ˆ
BR×{0}

(F (u(x))− cu) dx ≤ CRn−2s

ˆ 1

1
R

ρ−2s dρ, (4.37)

where C is a positive constant depending only on n, s, ‖f‖C1,α[(infRn u,supRn u)], and ‖u‖L∞(Rn). As

a consequence, for some constant C depending on the same quantities as above, we have

J cus,CR ≤ CRn−2s if 0 < s <
1

2
, (4.38)

J cus,CR ≤ CRn−1 logR if s =
1

2
, (4.39)

J cus,CR ≤ CRn−1 if
1

2
< s < 1. (4.40)

For s = 1
2
, the estimate was proved by Cabré and Cinti in [7]. For the case s ∈ (0, 1), these

results were announced by Cinti in their Ph.D. Thesis (see [17]). These estimates are sharp (see

Remark 1.3 in [8]). We also note that, in dimension n = 3, the energy estimate (4.37) holds

also for bounded monotone solutions without the limit assumption imposed by layer solutions.

These solutions can only be guaranteed to be minimizers among a certain class of functions (see

Proposition 6.2 in [8]), but could fail to be global minimizers in the sense of Definition 4.02. We

additionally note that the estimates given in Proposition 4.1.1 for layer solutions are uniform as

s ↑ 1, whereas the estimates in Proposition 4.1.2 are not. Neither are uniform for s near zero. The

estimates above have also been proven by Savin and Valdinoci without reliance on the extension

problem (see [53]).

With the above propositions at hand, we can now prove the fractional De Giorgi conjecture for

layer solutions via the extension problem outlined in Chapter 2.
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4.2 The Fractional De Giorgi Conjecture via the Extension Problem

Here, we prove the fractional De Giorgi conjecture for layer solutions u in dimensions n = 2

(general s) and n = 3 with s ∈ [1
2
, 1), using the extension problem introduced in Chapter 2. The

proof for the these cases proceeds in a similar manner as the proof for the local case presented in

Chapter 3. We first prove the conjecture for dimension n = 2 with general s. We then proceed

to the case n = 3 with s ∈ [1
2
, 1). In the following section, we will discuss the case n = 3 with

s ∈ (0, 1
2
). We will not prove the conjecture in this case since the proof relies on techniques from

the theory of minimal surfaces and is thereby outside of the scope of this project. We will, however,

provide the reader with an overview of how one obtains the result in this case.

4.2.1 Dimension n = 2 with s ∈ (0, 1) and Dimension n = 3 with s ∈ [1
2
, 1)

We begin our study of the fractional De Giorgi conjecture via the extension problem by following

the work of Cabré and Sire in [10] for dimension n = 2. In this section, we will consider the

problem (4.18) along with the associated energy (4.19). In particular, we will focus on layer

solutions of (4.18), in line with Definition 4.0.2. We will also assume that f ∈ C1,α(R) for some

α > max{0, 1− 2s}, where s ∈ (0, 1), and that the potential F satisfies the conditions (4.13) and

(4.14).

Dimension n = 2

Using Proposition 4.1.1 and Proposition 4.1.2, we may immediately prove the fractional De Giorgi

conjecture in dimension n = 2 for each s ∈ (0, 1).
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Theorem 4.2.1 (Theorem 2.12 in [10]). Let u be a layer solution of

(−∆)su = f(u) in R2

which is monotone in the variable x2. Then, u is a function of one variable. In particular,

u(x1, x2) = g0(cos(θ)x1 + sin(θ)x2) in R2 (4.41)

for some angle θ ∈ [0, 2π) and some solution g0 of the one-dimensional problem with the same

nonlinearity f . Moreover,∇u · τ > 0 everywhere, where we have set τ := (cos θ, sin θ).

Observe that the s-extension v of u satisfies

div(ya∇w) = 0 in Rn+1
+ for each n ≥ 1,

so that v ∈ C∞(Rn+1
+ ) by standard elliptic regularity. Thus, for each i = 1, . . . , n, vxi solves the

following problem with linearized boundary equation:


div(yaw) = 0 in Rn+1

+

− limy→0+ yawy − (1 + a)−1f ′(v(x, 0))w = 0 on ∂Rn+1
+ .

(4.42)

For each i = 1, . . . , n − 1, consider the function σi :=
vxi
vxn

and note that σi is well-defined since

vxn > 0 in Rn+1
+ by Lemma 4.1.2. In addition, we see that σi ∈ H1

loc(R
n+1
+ , ya) due to the regularity

inherited from problems (4.18) and (4.42). Thus, we may apply Proposition 4.1.1 with ϕ := vxn

and σ := σi. These observations allow us to formulate a straightforward proof of Theorem 4.2.1

resembling the proof in the local case.

Proof of Theorem 4.2.1. Set ϕ := vx2 and σ :=
vx1

ϕ
where v is the s-extension of u in R3

+. We

show that σ is constant.
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Computing, we see that

ϕ2∇σ = ϕ∇vx1 − vx1∇ϕ.

We claim that

div(yaϕ2∇σ) = 0 in R3
+.

Indeed, by direct computation we find

div(yaϕ2∇σ) = div(yaϕ∇vx1)− div(yavx1∇ϕ)

= div(ya∇vx1)ϕ− div(ya∇ϕ)vx1

= 0 in R3
+

since both vx1 and ϕ solve div(ya∇w) = 0 in R3
+. In addition,

− lim
y→0+

yaσy = 0 on ∂R3
+

since

− lim
y→0+

yaσy = − lim
y→0+

yavx1yϕ− yaϕyvx1y

ϕ2

and ϕ and vx1 satisfy the same linearized boundary condition in (4.42). Note that we are using the

fact that ϕ is strictly positive.

Our goal is to apply Proposition 4.1.1 (nonlocal Liouville theorem) to deduce that σ is constant,

provided ˆ
CR

ya(ϕσ)2 ≤ CR2

for all R > 1 and some constant C independent of R. Since ϕσ = vx1 , it suffices to show that

ˆ
CR

ya|∇v|2 ≤ CR2. (4.43)

In fact, after examining the proof of Proposition 4.1.1, it is apparent that it suffices for (4.43) to hold
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for all R > 2. Thus, we may apply the energy estimates (4.24), (4.25), and (4.26) in Proposition

4.1.2 for s in each case and use the fact that n = 2 and R > 2 to conclude (4.43) holds. Thus, σ is

constant.

Since σ is constant, we see that vx1 = cvx2 for some constant c. In particular,

∇v · (1,−c, 0) = vx1 − cvx2 = 0

so that v is constant along the direction (1,−c, 0). Note that (c, 1, 0) ·(1,−c, 0) = 0 so that (c, 1, 0)

is perpendicular to (1,−c, 0). Then, u(x) = v(x, 0) depends only on the variable parallel to (c, 1).

More precisely,

u(x1, x2) = g
(

(x1, x2) · 1√
c2 + 1

(c, 1)
)

= g

(
cx1√
c2 + 1

,
x2√
c2 + 1

)

= g(cos(θ)x1, sin(θ)x2)

for some angle θ ∈ [0, 2π). Set τ := (cos θ, sin θ). Then,

∇u · τ =
vx2√
c2 + 1

> 0

on R2, so the proof is complete.

We have thereby proven the fractional De Giorgi conjecture for layer solutions in dimension

n = 2. Using the same technique, we may extrapolate this result to dimension n = 3 for s ∈ [1
2
, 1),

though the case s = 1
2

requires quite a bit more work.

Dimension n = 3 with s ∈ [1
2
, 1)

Following the proof above, we see that the computation at the beginning remains valid in dimension

n = 3, aside from slight adjustments. Furthermore, for s ∈ (1
2
, 1), the estimate (4.43) continues to
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hold by (4.26) so we may obtain the result in this case.

For s = 1
2

the estimate (4.25) is no longer satisfactory in that we cannot apply Proposition 4.1.1

due to the factor of logR. In order to rectify this, we prove a more general version of Proposition

4.1.1, given by Cabré and Cinti in [7], which is the nonlocal version of Theorem 3.2.4.

To do so, the authors define

F :=
{
F : R+ → R+ : F is nondecreasing and

ˆ ∞
2

1

RF (R)
dR =∞

}
, (4.44)

which is nonempty since it includes the function F (R) = logR. Note that this is equivalent

to the condition on F in (3.66). To see this, observe that, since the function j 7→ F (2j+1) is

nondecreasing in j, we have that

∞∑
j=3

1

F (2j+1)
≤
ˆ ∞

2

ds

F (2s+1)
=

1

log 2

ˆ ∞
8

dR

RF (R)
≤

∞∑
j=2

1

F (2j+1)
,

which proves the claim.

Theorem 4.2.2 (Proposition 6.1 in [7]). Let ϕ ∈ L∞loc(Rn+1
+ ) be a positive function. Suppose that

σ ∈ H1
loc(R

n+1
+ , ya) satisfies


−σ div(ϕ2∇σ) ≤ 0 in Rn+1

+ ,

− limy→0+ σyaσy ≤ 0 on ∂Rn+1
+

(4.45)

in the weak sense. Let the following condition hold:

lim sup
R→∞

1

R2F (R)

ˆ
CR

ya(ϕσ)2 dx dy = C (4.46)

for some F ∈ F and C a positive constant independent of R. Then σ is constant.

The proof is identical to that of Theorem 3.2.4 in Chapter 3 after the initial computation, aside

from minor alterations. As such, we only demonstrate the initial computation. We denote by ν
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the unit outer normal to CR and ν+ the unit outer normal to C+
R := ∂CR \ (BR × {y = 0}). The

measure on ∂C+
R we denote by dS+ := dSn−1 dy, while the measure on ∂CR we denote (formally)

by dSR.

Proof of Theorem 4.2.2. Since σ satisfies (4.45), we see that

div(σyaϕ2∇σ) = yaϕ2|∇σ|2 + σ div(yaϕ2∇σ)

≥ yaϕ2|∇σ|2 in Rn+1
+ . (4.47)

Also,

ˆ
∂C+

R

yaσϕ2∂νσ dS
+ ≤

(ˆ
∂C+

R

yaϕ2|∇σ|2 dS+

) 1
2

·

(ˆ
∂C+

R

ya(ϕσ)2 dS+

) 1
2

(4.48)

by the Cauchy-Schwarz inequality. Integrating over (4.47) in CR, we see that

ˆ
CR

div(σyaϕ2∇σ) dx dy ≥
ˆ
CR

yaϕ2|∇σ|2 dx dy.

Integrating by parts on the left-hand side, we have

ˆ
CR

div(σyaϕ2∇σ) dx dy =

ˆ
CR

σ div(yaϕ2∇σ) dx dy +

ˆ
CR

yaϕ2|∇σ|2 dx dy

=

ˆ
∂CR

σyaϕ2〈∇σ, ν〉 dSR.

Hence, ˆ
∂CR

σyaϕ2〈∇σ, ν〉 dSR ≥
ˆ
CR

yaϕ2|∇σ|2 dx dy. (4.49)
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Focusing on the left-hand side in (4.49), we see that

ˆ
∂CR

σyaϕ2〈∇σ, ν〉 dSR =

ˆ
∂C+

R

σyaϕ2〈∇σ, ν+〉 dS+ − lim
y→0+

ˆ
∂C0

R

σyaϕ2σy dS

≤
ˆ
∂C+

R

σyaϕ2〈∇σ, ν+〉 dS+ (4.50)

by the boundary condition in (4.45). Set

D(R) :=

ˆ
CR

yaϕ2|∇σ|2 dx dy.

Then,

D′(R) =

ˆ R

0

ˆ
∂BR

yaϕ2|∇σ|2 dSn−1 dy +

ˆ
BR×{y=R}

yaϕ2|∇σ|2 dx

=

ˆ
∂C+

R

yaϕ2|∇σ|2 dS+ +

ˆ
BR×{y=R}

yaϕ2|∇σ|2 dx

≥
ˆ
∂C+

R

yaϕ2|∇σ|2 dS+

by the Leibniz formula and the fact that the second integral in the sum above is positive. By (4.49)

and (4.50), we have

D(R) ≤ D′(R)
1
2

(ˆ
∂C+

R

ya(ϕσ)2 dS+

) 1
2

. (4.51)

Now, arguing as in the proof of Theorem 3.2.4 (with minor adjustments) we obtain the result.

Corollary 4.2.1. Let ϕ ∈ L∞loc(Rn+1
+ ) be a positive function. Suppose that σ ∈ H1

loc(R
n+1
+ ) is such

that 
−σ div(yaϕ2∇σ) ≤ 0 in Rn+1

+

− limy→0+ σyaσy ≤ 0 on ∂Rn+1
+

(4.52)

in the weak sense. Assume that for every R > 1,

ˆ
CR

ya(σϕ)2 dx dy ≤ CR2 logR (4.53)
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for some constant C independent of R. Then σ is constant.

The proof of Corollary 4.2.1 is omitted, as it is identical to that of Corollary 3.2.1.

Theorem 4.2.2 allows for a simple extension of Theorem 4.2.1 to the dimension n = 3 with

s ∈ [1
2
, 1).

Theorem 4.2.3 (Theorem 1.4 in [7]). Let u be a layer solution of

(−∆)su = f(u) in R3

with s ∈ [1
2
, 1) which is monotone in the x3 direction. Then, u depends only on one variable. In

particular, there exists a unit vector τ ∈ R3 and some solution g0 of the one-dimensional problem

with the same nonlinearity such that

u(x) = g0(τ · x) for all x ∈ R3.

Furthermore,

∇u · τ > 0 on R3,

with τ := (sinφ cos θ, sinφ sin θ, cosφ) for some angles φ and θ satisfying 0 ≤ φ ≤ π and

0 ≤ θ < 2π.

Proof. Fix i ∈ {1, 2} and let ϕ := vx3 and σ :=
vxi
ϕ

where v is the s-extension of u in R4
+. We

show that σ is constant. Repeating the same computation in R4
+ as in the beginning of the proof of

Theorem 4.2.1 with vx1 replaced by vxi gives

div(yaϕ2∇σ) = 0 in R4
+. (4.54)

Moreover,

lim
y→0+

yaσy = 0 on ∂R4
+ (4.55)
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since

− lim
y→0+

yaσy = − lim
y→0+

yavxiyϕ− yaϕyvxiy
ϕ2

and ϕ and vxi satisfy the same linearized boundary condition in (4.42). We are again using the

fact that ϕ is strictly positive. Note that the estimates (4.25) and (4.26) in Proposition 4.1.2 hold,

where s = 1
2

and s ∈ (1
2
, 1), respectively. Then, by (4.54) and (4.55), we see that the hypotheses

for Proposition 4.1.1 and Corollary 4.2.1 are met so σ is constant for s = 1
2

and s ∈ (1
2
, 1). Since

i ∈ {1, 2} is fixed, we deduce that σi :=
vxi
ϕ

is constant for each i ∈ {1, 2} and each s ∈ [1
2
, 1).

It follows that vxi = civx3 for each i ∈ {1, 2}. We then find that the trace u(x) = v(x, 0) of

v on ∂R4
+ = R3 is constant along the directions in R3 perpendicular to (c1, c2, 1) so that u is

one-dimensional. Setting

τ :=
1√

c2
1 + c2

2 + 1
(c1, c2, 1) = (sinφ cos θ, sinφ sin θ, cosφ)

for some angles φ ∈ [0, π] and θ ∈ [0, 2π), we see that

u(x) = g0(x · τ) for all x ∈ R3,

where g0 is some solution of the one-dimensional problem with the same nonlinearity and τ as

desired. Moreover,

∇u · τ =
vx3√

c2
1 + c2

2 + 1
> 0 on R3,

concluding the proof.

Together, Theorem 4.2.1 and Theorem 4.2.3 resolve the fractional De Giorgi conjecture for

layer solutions in dimension n = 2, as well as dimension n = 3 with s ∈ [1
2
, 1). We note that we

are not able to obtain the desired conclusion for the case dimension n = 3 and s ∈ (0, 1
2
) since the

estimate (4.24) is no longer suitable in this case. To see this, we simply observe that Rn−2s > R2

for all R > 1 after setting n = 3 and s ∈ (0, 1
2
) so that Proposition 4.1.1 is not applicable.

Furthermore, setting F (R) = Rn−2(1−s) for R > 1, we find that RF (R) = Rn−1−2s = R2(1−s)
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when n = 3. Then, for s ∈ (0, 1
2
), we see that 2(1−s) > 1 so that F /∈ F . It follows that Theorem

4.2.2 may not be applied either. We also see that the above techniques fail for 4 ≤ n ≤ 8 for

similar reasons as in the local case.

4.2.2 Dimension n = 3 with s ∈ (0, 1
2
)

Thus far, we have proven the fractional De Giorgi conjecture for layer solutions in dimension n = 2

for each s ∈ (0, 1) and dimension n = 3 with s ∈ [1
2
, 1) . We henceforth refer to the case s ∈ [1

2
, 1)

as the weakly nonlocal regime while the case s ∈ (0, 1
2
) we call the genuinely nonlocal regime. In

this section, we will work specifically with the fractional Allen-Cahn equation, that is, equation

(4.1). The fractional De Giorgi conjecture in dimension n = 3 for layer solutions of (4.1) in the

genuinely nonlocal regime has been proven by Dipierro et al. in [19], whose work was inspired by

Savin’s in the local case for dimensions 4 ≤ n ≤ 8 (see [49]). More recently, Dipierro et al. have

proven the result without the limit assumption in [18]. We will follow their work, in the hopes of

providing an overview of the ideas used in higher dimensions, as well as the techniques used for

extended fractional De Giorgi conjectures. The theorem to be considered is as follows.

Theorem 4.2.4 (Theorem 1.1 in [18]). Let n ≤ 3 with s ∈ (0, 1
2
) and u ∈ C2(Rn, [−1, 1]) be a

solution of

(−∆)su = u− u3 in Rn, (4.56)

with uxn > 0 in Rn. Then u is a function of one-variable.

Recalling the inadequacy of the estimate (4.24) for the case n = 3 and s ∈ (0, 1
2
), as well as the

fact that this estimate is sharp, it becomes clear that the extension technique alone is not suitable if

we wish to obtain De Giorgi type results in dimension n = 3 in the genuinely nonlocal regime.

Before we continue, we quickly recast the phase transition model described in the introduction

of Chapter 3, as these ideas will briefly resurface. This time, however, we will focus on the nonlocal

formulation. In this context, equation (4.56) represents a phase transition subject to long-range

interactions. Precisely, the states u = −1 and u = 1 represent “pure phases” and equation (4.56)
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models the coexistence between intermediate phases and the separation between them.

As proved by Savin and Valdinoci in [52] and [53], if u is a local energy minimizer for (4.56)

and uε(x) := u(x
ε
), we have that uε approaches a pure phase step function as ε ↓ 0 having values

in {−1, 1}. That is, we may write

lim
ε↓0

uε = χE − χRn\E,

up to subsequences, with the set E possessing a minimal interface criterion depending on s and

a bifurcation2 occuring at the threshold s = 1
2
. In particular, in the weakly nonlocal regime (i.e.

s ∈ [1
2
, 1)), the set E turns out to be a local minimizer for the classic perimeter functional (3.7).

In other words, on a large scale, the weakly nonlocal regime is nearly indistinguishable from the

classical case and, in spite of the nonlocality of equation (4.56), its limit interface behaves in a

local way when s ∈ [1
2
, 1). In the genuinely nonlocal regime (i.e. s ∈ (0, 1

2
)), the set E turns out

to be a local minimizer for the nonlocal perimeter functional

Ps,Ω(w) :=
C(n, s)

2

ˆ ˆ
QΩ

|w(x)− w(y)|2

|x− y|n+2s
dx dy, (4.57)

where Ω ⊂ Rn and w : Ω→ R, in the sense below.

Definition 4.2.1. We say that a set E ⊂ Rn is a s-perimeter minimizer in Rn if its characteristic

function is a minimizer for the functional (4.57) among characteristic functions. That is, if

Ps,B(χE) <∞

and

Ps,B(χE) ≤ Ps,B(χF )

for any ball B ⊂ Rn and any F ⊂ Rn such that F \B = E \B.

2A bifurcation occurs when a small smooth change made to the parameter values of a system causes a sudden
qualitative or topological change in its behavior.
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In this section, we adopt the framework of Dipierro et. al in [18]. Set

QΩ := (Ω× Ω) ∪ (Ω× Ωc) ∪ (Ωc × Ω),

where Ω ⊂ Rn and Ωc denotes the complement of Ω in Rn. Consider the energy

Js,Ω(w) :=
C(n, s)

2

ˆ ˆ
QΩ

|w(x)− w(y)|2

|x− y|n+2s
dx dy +

ˆ
Ω

F (w(x, 0)) dx (4.58)

where F is as before and w : Rn → R, and notice that (4.58) is simply (4.4) on a general domain

Ω. We have the following:

Definition 4.2.2 (Local Minimizer). We say that u is a local minimizer of (4.58) if, for any R > 0

and any φ ∈ C∞0 (BR), it holds that

Js,BR(u) ≤ Js,BR(u+ φ).

Here, BR denotes the ball of radius R centered at the origin in Rn.

Now, given any w : Rn+1
+ → R and Ω ⊂ Rn+1, we may define the extended energy on a general

domain by

J+
s,Ω(w) :=

ds
2

ˆ
Ω+

ya|∇w(x, y)|2 dx dy +

ˆ
Ω0

F (w(x, 0)) dx, (4.59)

where Ω+ := Ω ∩ Rn+1
+ , Ω0 := Ω ∩ {y = 0}. Here w := w(x, y) where x ∈ Rn and y > 0.

Definition 4.2.3 (Extended Local Minimizer). We say that v is an extended local minimizer if, for

any R > 0 and any φ ∈ C∞0 (BR), it holds that

J+
s,BR(v) ≤ J+

s,BR(v + φ).

Here, BR denotes the ball of radius R in Rn+1 centered at the origin 3.

3Once again, the reader should compare the extended energy (4.59) to (4.6).
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Suppose

(−∆)su = f(u) in Rn. (4.60)

Then, by Proposition 2.5 in [18], we see that the s-extension v of u in Rn+1
+ is a local minimizer

in the sense of Definition 4.2.3 if and only if u is a local minimizer in the sense of Definition 4.2.2.

The authors also used the notion of a stable solution.

Definition 4.2.4 (Stable Solution). Let u be a solution of

(−∆)su = f(u) in Rn.

We say that u is stable4 if

ˆ
Rn+1

+

ya|∇φ(x, y)|2 dx dy −
ˆ
Rn
f ′(u(x))φ2(x, 0) dx ≥ 0 (4.61)

for all φ ∈ C∞0 (Rn+1).

In order to prove Theorem 4.2.4, Dipierro et al. first considered the two profiles of a given

solution at infinity. Precisely, if s ∈ (0, 1) and u ∈ C2(Rn, [−1, 1]) is a solution of (4.60) with

uxn > 0 in Rn, we set

u(x′) := lim
xn→−∞

u(x′, xn) and u(x′) := lim
xn→+∞

u(x′, xn),

where x′ ∈ Rn−1. The following holds.

Lemma 4.2.1 (Lemma 4.1 in [18]). Assume that dimension n = 3. Then, both u and u are one-

dimensional and local minimizers.

To prove Lemma 4.2.1, the authors pass the equation to the limit to find both u and u are stable

solutions in R2. By the classification of solutions in R2 (see below), we find that u and u are

4See also Definition 4.2.5 below.
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one-dimensional and monotone. Then, using the fact that stable solutions of (4.60) in R satisfying

u ∈ C2(R, [−1, 1]) and u′ ≥ 0 are local minimizers for each s ∈ (0, 1) (see Lemma 3.1 in [18]),

local minimality follows.

Dipierro et al. then proved the lemmata below.

Lemma 4.2.2 (Lemma 6.1 in [18]). Let s ∈ (0, 1) and u ∈ C2(Rn, [−1, 1]) be a solution of (4.60)

such that uxn > 0 in Rn. Suppose u and u are local minimizers in Rn−1. Then, the s-extension v

of u is a local minimizer in Rn+1
+ and u is a local minimizer in Rn.

Now, setting f(u) = u − u3, Dipierro et al. [18] relied on two earlier results of Dipierro et al.

(see [19]) concerning solutions u of (4.56).

Lemma 4.2.3 (Lemma 8.1 in [19]). Let u ∈ C2(Rn, [−1, 1]) be a minimizing solution of (4.56) in

Rn with s ∈ (0, 1
2
). For each ε > 0, set uε := u(x

ε
). Then, there exists a nonempty set E ⊂ Rn

which is a minimizer of the s-perimeter (4.57) in Rn and, up to a subsequence,

uε → χE − χEc

a.e. in Rn as ε ↓ 0. In addition, the sets {uε ≤ 1 − κ} and {uε ≤ −1 + κ} converge locally

uniformly to Ec in the sense of the Hausdorff distance5.

Lemma 4.2.4 (Lemma 8.3 in [19]). Assume that E is a minimizer of the s-perimeter that is con-

tained in some half-space. Then, either E is empty or E is a parallel half-space.

Using the above results and the fact that Theorem 4.2.4 holds for layer solutions in dimension

n = 3 with s ∈ (0, 1
2
) (see [19]), Dipierro et al. obtain the fractional De Giorgi conjecture in

dimension n = 3 in the genuinely nonlocal regime. For the details, we refer the reader to the

original paper.
5Let X and Y be two nonempty subsets of a metric space (M,d). We define their Hausdorff distance dH(X,Y )

by

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

Loosely speaking, two sets are close in the Hausdorff distance if every point of either set is close to some point of the
other set.
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4.2.3 Fractional Stability and Fractional Global Minimizers

Similar to the local case, and alluded to above, we may drop the assumption that v is a layer so-

lution of (4.5) and replace this condition with looser hypotheses and still obtain De Giorgi type

results for (−∆)s. We quickly remark on two classes of solutions already discussed: global min-

imizers and stable solutions for the fractional Allen-Cahn equation. This time, we consider these

solutions without the extension problem. Moreover, we focus on these results for the Allen-Cahn

nonlinearity.

In this context, we define stability as follows.

Definition 4.2.5. A solution u of the fractional Allen-Cahn equation (4.56) is said to be stable in

Ω if for all φ ∈ C1
0(Ω), we have

C(n, s)

ˆ ˆ
Rn×Rn\(Ωc×Ωc)

|φ(x)− φ(y)|2

|x− y|n+2s
dx dy +

ˆ
Ω

(3u2 − 1)φ2 dx ≥ 0. (4.62)

Remark 4.2.1. We subtract Ωc × Ωc from the domain of integration so that the expression is

well-defined.

The one-dimensional symmetry of stable solutions was proved for general s ∈ (0, 1) by Sire

and Valdinoci in [57] and Dipierro et al. in [19] when n = 2. In addition, a breakthrough was

made by Figalli and Serra in [28] when n = 3 and s = 1
2
.

We may likewise define global minimizers of (4.56).

Definition 4.2.6. A solution u is said to be a global minimizer on a compact set Ω ⊂ Rn if

Js,Ω(u) ≤ Js,Ω(u+ φ), for all φ ∈ C1
0(Ω), (4.63)

where this time Js,Ω is given by

Js,Ω(w) :=
C(n, s)

2

ˆ ˆ
Rn×Rn\(Ωc×Ωc)

|w(x)− w(y)|2

|x− y|n+2s
dx dy +

1

4

ˆ
Ω

(1− u2)2 dx. (4.64)
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Classifications of global minimizers of (4.2) have been given by Dipierro et al. in [19] and

Savin in [51]. Recently, Chan et al. constructed counterexamples in [15, 16] to the fractional

De Giorgi conjecture for global minimizers and solutions that are monotone in xn in dimensions

n = 8, 9, respectively, with s ∈ (1
2
, 1). Taken together, this implies that Savin’s classifications of

global minimizers and monotone solutions in [51] are optimal. For more on these results, we refer

the reader to the original papers.

4.3 A Nonlocal Monotonicity Formula and Modica-type Estimate

We turn once more to the subject of monotonicity formulae, this time for the nonlocal operator

(−∆)s. Specifically, we present a Modica-type estimate due to Cabré and Sire in dimension n = 1

(see [9]). After proving this result, we develop a nonlocal Pohozaev identity which we use to

obtain a nonlocal monotonicity formula in the spirit Modica due to Cabré and Cinti (see [8]).

4.3.1 A Nonlocal Modica-type Estimate in Dimension n = 1

In this section, we work with problem (4.18), that is,


div(ya∇v) = 0 in Rn+1

+ ,

−(1 + a) limy→0+ yavy = f(v(x, 0)) on ∂Rn+1
+ ,

as well as the energy functional

J+

B+
R

:=

ˆ
B+
R

1

2
ya|∇w|2 dx dy +

ˆ
BR×{0}

1

1 + a
F (w(x, 0)) dx. (4.65)

Note that (4.65) is simply (4.19) with the domain of integration in the first term replaced by B+
R .

From the expression above, we see that the Lagrangian is given by

L(q, p) =
1

2
‖p‖2

2,a +W (q),
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where

W (q) =
1

2
‖∂yq‖2

2,a +
1

1 + a
F (q(0)), and

‖w‖2
2,a =

ˆ ∞
0

ya|w(y)|2 dy.

Here, the time variable is τ = x, the position q is the function v(τ, ·) in the half-line {y ≥ 0}, and

the momentum is p = q′ = vx(τ, ·).

The Legendre transform6 of L with respect to p then gives the Hamiltonian

H(q, p) =
1

2
‖p‖2

2,a −W (q)

=

ˆ ∞
0

ta

2
[v2
x(x, t)− v2

y(x, t)] dt−
1

1 + a
F (v(x, 0)), (4.66)

which will play an important role in the sequel.

Using the Hamiltonian (4.66), we obtain an analogue in dimension n = 1 to the Modica

estimate introduced in Chapter 3 for the Laplacian. The proofs that follow will rely on some

regularity results and maximum principles for the problem (4.18) which we have listed in Appendix

D for convenience. In addition, we use the notation La := div(ya∇(·)) to ease computations.

We begin by establishing integrability of the quantity ya|∇v|2 in the variable y, where v solves

(4.18), and show that differentiability in x under the integral sign in
´∞

0
ta|∇v|2 dt is permitted.

Lemma 4.3.1 (Lemma 5.1 in [9]). Let v ∈ L∞(Rn+1
+ ) be a bounded solution of (4.18). Then, for

all x ∈ Rn we have ˆ ∞
0

ta|∇v(x, t)|2 dt <∞. (4.67)

In addition, the integral can be differentiated with respect to x ∈ Rn under the integral sign.

6Recall that, by definition, the Hamiltonian H is given by the Legendre transform of the Lagrangian L. That is,

H =
∑
i

pi
∂L

∂pi
− L.
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Furthermore,

lim
M→∞

ˆ ∞
M

ta|∇v(x, t)|2 dt = 0 (4.68)

uniformly for x ∈ Rn. If, in addition, v is a layer solution, then

lim
xn→∞

ˆ ∞
0

ta|∇v(x, t)|2 dt = 0. (4.69)

Proof. Differentiability under the integral sign in x and (4.67) follow directly from (D.2), since

ya|∇v(x, y)|2 ≤ Cya−2

for some constant C independent of (x, y) ∈ Rn+1
+ , where a − 2 < −1. For the same reason, the

limit (4.68) holds uniformly for x ∈ Rn. The limit (4.69) is obtained by writing

ˆ ∞
0

ta|∇v(x, t)|2 dt =

ˆ M

0

ta|∇v(x, t)|2 dt+

ˆ ∞
M

ta|∇v(x, t)|2 dt

for M large and applying (4.68), as well as (D.8) and (D.9).

Using Lemma 4.3.1, we may prove conservation of the Hamiltonian (4.66) in dimension n = 1.

Lemma 4.3.2 (Conservation of Hamiltonian; Lemma 5.2 in [9]). Let n = 1 and assume that v is a

layer solution of (4.18). Then, for all x ∈ R we have

ˆ ∞
0

ta|∇v(x, t)|2 dt <∞ (4.70)

and the following Hamiltonian identity holds:

(1 + a)

ˆ ∞
0

ta

2
[v2
x(x, t)− v2

y(x, t)] dt = F (v(x, 0))− F (1). (4.71)

As a consequence F (1) = F (−1).

Proof. The integrability of ya|∇v|2 is a direct consequence of Lemma 4.3.1 above. Thus, we need
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only to establish identity (4.71). Consider the function

h(x) =

ˆ ∞
0

ta

2
[v2
x(x, t)− v2

y(x, t)] dt. (4.72)

Applying Lemma 4.3.1 once more, we may differentiate under the integral sign above to find

h′(x) =

ˆ ∞
0

ta(vxxvx − vxyvy)(x, t) dt. (4.73)

We note that Lav = ∂y(y
avy) + yavxx = 0. Integrating by parts, we have

ˆ ∞
0

ta(vxxvx − vxyvy) dt =

ˆ ∞
0

tavxxvx dt−
ˆ ∞

0

tavxyvy dt

=

ˆ ∞
0

tavxxvx dt+

ˆ ∞
0

∂

∂y
(tavy)vx dt

=

ˆ ∞
0

[tavxx +
∂

∂y
(tavy)]vx dt− yavyvx|∞0

= lim
y→0+

yavyvx.

Hence, we see that

h′(x) = lim
y→0+

yavyvx

=
1

1 + a

d

dx
[F (v(x, 0))]

by continuity and the fact that F ′(v(x, 0)) = − limy→0+ yavy(x, 0). It follows that the function

(1 + a)h(x) − [F (v(x, 0)) − F (1)] is constant in the variable x. Letting x → ∞, Lemma 4.3.1

shows that this constant is zero. Indeed, since ya

2
(v2
x − v2

y)(x, y) ≤ ya|∇v|2(x, y), the limit (4.69)

gives the result. We now let x → −∞ so that F (v(x, 0)) − F (1) → F (−1) − F (1) since v is

monotone increasing, ranging from −1 to 1. Using the same estimate as above, we conclude that

F (1) = F (−1), as desired.
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Remark 4.3.1. We note that, if for each s ∈ (0, 1) us is a layer solution of

(−∂xx)sus = f(us) in R

such that us(0) = 0, then there exists a function u such that lims↑1 us = u in the uniform C2 norm

on every compact subset of R. Furthermore, u is a layer solution of

−u′′ = f(u) in R

with u(0) = 0 (see Theorem 2.2(ii) in [9]). In particular, u satisfies the Hamiltonian equality

1

2
(u′)2 = F (u)− F (1) in R.

In other words, in the limit as s ↑ 1, we obtain the usual conservation of the Hamiltonian for the

Laplacian in dimension n = 1 (see also Theorem 6.1 in [9]).

Combining Lemmas 4.3.1 and 4.3.2 allows us to prove a Modica-type estimate for the problem

(4.18) when n = 1. We emphasize that the following estimate is pointwise in x and nonlocal.

Theorem 4.3.1 (Modica-type Estimate; Theorem 2.3 in [9]). Let n = 1 and assume that v is a

layer solution of (4.18). Then, for every y ≥ 0 and all x ∈ R, we have

(1 + a)

ˆ y

0

ta

2
[v2
x(x, t)− v2

y(x, t)] dt < F (v(x, 0))− F (1). (4.74)

Proof. Consider the function

w(x, y) =

ˆ y

0

ta

2
[v2
x − v2

y](x, t) dt, (4.75)

and note that w is bounded in all of R2
+ by Lemma 4.3.1. Consider also the function

w(x, y) =
1

1 + a
[F (v(x, 0))− F (1)]− w(x, y) (4.76)
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By the same reasoning, we see also that w is bounded in R2
+. We need to show that w > 0 in R2

+.

To do so, we first derive some equations for w which will be helpful throughout the proof.

First, we observe that, for all y > 0,

wy(x, y) = −y
a

2
(v2
x − v2

y)(x, y). (4.77)

Furthermore, using the fact that Lav = 0, we may integrate by parts as in the proof of Lemma

4.3.2 to find that, for all y > 0,

wx(x, y) = yavx(x, y)vy(x, y). (4.78)

Indeed, we have

wx(x, y) =
1

1 + a

d

dx
[F (v(x, 0))− w(x, y)]

= − d

dx
w(x, y),

where

d

dx
w(x, y) =

ˆ y

0

ta(vxxvx − vxyvy) dt

(Integrate by Parts) = −yavyvx + lim
y→0+

yavvy

= −yavyvx +
1

1 + a

d

dx
F (v(x, 0)).

It follows that (4.78) holds. Then, by (4.77) and (4.78) combined with the fact that Lav = 0, we

see that

Law = −ay2a−1v2
x (4.79)

and

L−aw = −ay−1v2
y (4.80)
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for all y > 0. To see this, observe that

Law = div(ya∇w)

=
∂

∂x
(yawx) +

∂

∂y
(yawy)

= yawxx + aya−1wy + yawyy

= ya[yavxxvy + yavxvxy] + aya−1[−y
a

2
(v2
x − v2

y)] + ya[−yavxvxy + yavyvyy −
aya−1

2
(v2
x − v2

y)]

= −ay2a−1v2
x + y2avxxvy + ay2a−1v2

y + y2avyvyy

= −ay2a−1v2
x + yavy[y

avxx + aya−1vy + yavyy]

= −ay2a−1v2
x + yavyLav

= −ay2a−1v2
x,

and a similar computation works for L−aw.

We claim that w does not achieve its infimum at a point in R2
+. To show this, we assume the

contrary and reach a contradiction. Let (x0, y0) be a point where the infimum is achieved. There

are two cases to consider, depending on if (x0, y0) is on the boundary (i.e. y0 = 0) or not. We will

also use the fact that w is not identically constant, for if it were, then

constant = w(·, 0) =
1

1 + a
[F (v(·, 0))− F (1)]

since w(·, 0) ≡ 0. Thus, F is constant in (−1, 1), f ≡ 0 in (−1, 1), and v is a bounded function

satisfying (4.18) with f ≡ 0. Hence, after even reflection across {y = 0}, Proposition D.2.2

(Harnack inequality) shows that v is constant, contradicting the fact that vx > 0.

• (Case 1: y0 = 0). After a translation in x, we may assume x0 = 0. Since x0 = 0 is a global

minimum of (1 + a)w(·, 0) = F (v(·, 0))− F (1), we have

d

dx
F (v(x, 0))|x=0 = −f(v(0, 0))vx(0, 0),
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so that

0 = −f(v(0, 0))

= (1 + a) lim
y→0+

yavy(0, y), (4.81)

by the fact that v is a layer solution and, hence, vx(x, 0) > 0. Moreover, we have

vx(x, y) > 0 in R2
+ (4.82)

by Lemma 4.1.2. We now consider two subcases. The first of these is the case a ≥ 0. By

(4.77) and Morrey’s inequality, we see that yawy is H’́older continuous up to ∂R2
+. Since

Law ≤ 0 by (4.79) and w is not identically a constant, we have w > w(0, 0) in R2
+ by the

Proposition D.2.1 (maximum principle). Thus, by Lemma D.2.1 (Hopf Lemma), we see that

0 > − lim
y→0+

yawy(0, y)

= lim
y→0+

y2a

2
[v2
x(0, y)− v2

y(0, y)]

(Neumann Condition) = lim
y→0+

y2a

2
v2
x(0, y) ≥ 0,

a contradiction. Now, suppose a < 0. Since (0, 0) is a global minimum for w(x, y), we find

0 ≥ lim inf
y→0+

−y−awy(0, y)

= lim inf
y→0+

1

2
[v2
x(0, y)− v2

y(0, y)]

=
1

2
v2
x(0, 0) > 0,

which is also a contradiction. Here, we have used (D.2).
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• (Case 2: y0 > 0). By (4.82), we have vx > 0 in R2
+. Using (4.78) and (4.80), we obtain

0 = L−aw + ay−1v2
y

= L−aw + (ay−1−a vy
vx

)wx

= div(y−a∇w) + b(x, y)wx in R2
+, (4.83)

where b(x, y) := ay−1−avyv
−1
x . However, the operator in (4.83) is uniformly elliptic with

continuous coefficients in compact sets of {y > 0}. From the maximum principle for uni-

formly elliptic operators, it follows that w cannot achieve its minimum at (x0, y0), since

y0 > 0 and we have shown that w is not identically constant. Therefore, we know w cannot

achieve its infimum at a point in R2
+.

To conclude the proof, assume

inf
R2

+

w < 0.

By Lemma 4.3.2, we see that w(x, y) → 0 as y → ∞ locally uniformly in x. By Lemma 4.3.1,

we have w(x, y) → 0 as |x| → ∞ uniformly in y. Indeed, for the first statement, it is clear that

w(x, y) → 1
1+a

[F (v(x, 0)) − F (1)] as y → ∞ by Lemma 4.3.2, so that w(x, y) → 0 as y → ∞.

To establish local uniform convergence in x, observe that the function f ∗(x) = F (v(x, 0))−F (1)

is uniformly continuous on compact subsets of R by continuity of v and F . Hence, for a given

compact subset K ⊂ R and ε > 0, there exists R := RK,ε such that |x1 − x2| < R implies

|f ∗(x1)− f ∗(x2)| < (1 + a) · ε, provided x1, x2 ∈ K. Then, we find

lim
y→∞
|w(x1, y)− w(x2, y)| = |f ∗(x1)− f ∗(x2)|

< (1 + a)ε,

so that there exists Y := YK,ε such that y ≥ Y implies |w(x1, y)− w(x2, y)| < (1 + a)ε. Then, if
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y ≥ Y , we see that

|w(x1, y)− w(x2, y)| =
∣∣∣∣ 1

1 + a
[f ∗(x1)− f ∗(x2)] + w(x1, y)− w(x2, y)

∣∣∣∣
≤ 1

1 + a
|f ∗(x1)− f ∗(x2)|+ |w(x1, y)− w(x2, y)|

≤ ε+ |w(x1, y)− w(x2, y)|

≤ (2 + a)ε,

so that w is Cauchy in x as y → ∞ on compact subsets K of R. The second statement is a direct

application of Lemma 4.3.1. Therefore, since w < 0, it should be achieved at a point in R2
+.

However, this contradicts what has been proven. It follows that

inf
R2

+

w ≥ 0,

so that w ≥ 0. In fact, if w vanished at a point in R2
+, this point would be the infimum of w, a

contradiction. Hence w > 0 in R2
+. This completes the proof.

We have thereby established a Modica-type estimate for layer solutions of the problem (4.18)

in dimension n = 1. Unfortunately, this is the only known result for the stationary (i.e. time

independent) case. Thus, for dimensions n ≥ 2, establishing a Modica-type estimate similar to

above would constitute an exciting new result. We point out, however, that for s = 1
2

in the non-

stationary case, a corresponding Hamiltonian identity has been established by Caffarelli, Mellet,

and Sire in [12].

4.3.2 A Nonlocal Pohozaev Identity and Monotonicity Formula

The final theorem to be proved is the nonlocal version of the Pohozaev-type monotonicity formula

derived in Chapter 3. Similar to the local case, we will obtain the monotonicity formula by making

use of a nonlocal Pohozaev identity for the fractional Laplacian.
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Lemma 4.3.3 (Nonlocal Pohozaev Identity; Lemma 3.1 in [8]). Let s ∈ (0, 1) and f ∈ C1,α(R)

with α > max{0, 1 − 2s}, and suppose that v is a bounded solution of the problem (4.5). Then,

for every R > 0

n− 2s

2

ˆ
B+
R

ya|∇v|2 dx dy + n

ˆ
BR×{0}

d−1
s F (v(x, 0)) dx =

R

2

ˆ
∂+B+

R

ya|∇v|2 dSn −R
ˆ
∂+B+

R

ya(∂νv)2 dSn +R

ˆ
∂BR×{0}

d−1
s F (v) dSn−1, (4.84)

where ∂νv denotes the outer normal derivative of v on ∂+B+
R .

Proof. Set z = (x, y). Multiplying the equation

div(ya∇v) = 0

by 〈z,∇v〉, we see that

0 = div(ya∇v)〈z,∇v〉

= div(ya∇v〈z,∇v〉)−∇
(
〈z,∇v〉

)
· ya∇v

= div(ya∇v〈z,∇v〉)− ya
(
|∇v|2 +

〈
z,∇

(
|∇v|2

2

)〉)
.

Computing, we find

ya

〈
z,∇

(
|∇v|2

2

)〉
= div

(
yaz

(
|∇v|2

2

))
−

ya(n+ 1)
|∇v|2

2
− (1− 2s)ya

|∇v|2

2

= div

(
yaz

(
|∇v|2

2

))
− n+ 2− 2s

2
ya|∇v|2.

Hence,

div

(
ya

(
∇v〈z,∇v〉 − z |∇v|

2

2

))
+
n− 2s

2
ya|∇v|2 = 0.
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Integrating by parts in B+
R , we obtain

ˆ
∂+B+

R

ya〈ν,∇v〉〈z,∇v〉 dSn − lim
y→0+

ˆ
BR×{0}

yavy〈x,∇xv〉 dx−

1

2

ˆ
∂+B+

R

ya|∇v|2〈z, ν〉 dSn +
n− 2s

2

ˆ
B+
R

ya|∇v|2 dx dy = 0,

where ν is the outer unit normal to ∂+B+
R . Note that z = Rν on ∂+B+

R and −ds limy→0+ yavy =

f(v) on BR × {0}. Therefore,

R

ˆ
∂+B+

R

ya(∂νv)2 dSn +

ˆ
BR×{0}

d−1
s f(v(x, 0))〈x,∇xv〉 dx−

R

2

ˆ
∂+B+

R

ya|∇v|2 dSn +
n− 2s

2

ˆ
B+
R

ya|∇v|2 dx dy = 0. (4.85)

Furthermore, on {y = 0} we have

ˆ
BR×{0}

f(v(x, 0))〈x,∇xv〉 dx = −
ˆ
BR×{0}

〈
x,∇xF (v(x, 0))

〉
dx

=

ˆ
BR×{0}

− div
(
xF (v(x, 0))

)
+ nF (v(x, 0)) dx

= n

ˆ
BR×{0}

F (v(x, 0) dx−R
ˆ
∂BR×{0}

F (v) dSn−1.

Replacing in (4.85) and rearranging terms gives the result.

With Lemma 4.3.3 at hand, the proof of the nonlocal monotonicity formula is now a simple

differentiation and integration by parts.

Theorem 4.3.2 (Nonlocal Monotonicity Formula; Proposition 3.2 in [8]). Let s ∈ (0, 1) and f ∈

C1,α(R) with α > max{0, 1− 2s}, and suppose that v is a bounded solution of the problem (4.5)

with F (t) ≥ 0 for every t ∈ R. Then, the function

Is(R) =
1

Rn−2s

(
ds
2

ˆ
B+
R

ya|∇v|2 dx dy +

ˆ
BR×{0}

F (v(x, 0)) dx

)
(4.86)
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is a nondecreasing function of R > 0.

Proof. Differentiating Is(R) with respect to R, we find

I ′s(R) =
(n− 2s)ds
2Rn−2s+1

ˆ
B+
R

ya|∇v|2 dx dy − n− 2s

Rn−2s+1

ˆ
BR×{0}

F (v(x, 0)) dx+

ds
2Rn−2s

ˆ
∂+B+

R

ya|∇v|2 dSn +
1

Rn−2s

ˆ
∂BR×{0}

F (v) dSn−1.

Then, applying the Lemma 4.3.3 we obtain

I ′s(R) =
ds

Rn−2s−1

(
R

2

ˆ
∂+B+

R

ya|∇v|2 dSn +R

ˆ
∂BR×{0}

d−1
s F (v) dSn−1

)
−

(n− 2s)ds
2Rn−2s+1

ˆ
B+
R

ya|∇v|2 dx dy − n− 2s

Rn−2s+1

ˆ
BR×{0}

F (v(x, 0)) dx

=
ds

Rn−2s

(
n− 2s

2R

ˆ
B+
R

ya|∇v|2 dx dy +
n

R

ˆ
BR×{0}

d−1
s F (v) dx+

ˆ
∂+B+

R

ya(∂νv)2 dSn

)
−

(n− 2s)ds
2R ·Rn−2s+1

ˆ
B+
R

ya|∇v|2 dx dy − n− 2s

Rn−2s+1

ˆ
BR×{0}

F (v(x, 0)) dx

=
ds

Rn−2s

ˆ
∂+B+

R

ya(∂νv)2 dSn +
2s

Rn−2s+1

ˆ
BR×{0}

F (v(x, 0)) dx ≥ 0,

as claimed.

Comparing with I(R) in (3.28), the quantity Is(R) is nearly identical aside from a missing

factor of R−1. In the local case, we were able to prove the monotonicity formula for I(R) by using

the Modica estimate Proposition 3.1.1. However, in the nonlocal case we have no such estimate

(at least for dimension n ≥ 2) allowing us to only obtain (4.86).

Remark 4.3.2. Though not the subject of this project, we feel it is worthwhile to point out that

other monotonicity formula exist for the fractional Laplacian. For example, in [9] Cabré and Sire

prove a monotonicity formula for radial solutions of (4.18). In addition, Caffarelli and Silvestre

prove a nonlocal version of Almgren’s frequency formula in their 2007 paper introducing the ex-

tension problem (see [13]). Fazly and Shahgholian in [25] have also worked out a monotonicity
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formula similar to (4.86) for solutions of the coupled elliptic system

(−∆)sui = |u|p−1ui in Rn.

4.4 Current Directions and Further Study

In addition to the cases n ≤ 3 we have discussed prior, the conjecture has been proven by Savin

in [51] for dimensions 4 ≤ n ≤ 8 and s ∈ (1
2
, 1) for the fractional Allen-Cahn equation assuming

the solution is a layer solution in Rn. Thus, the fractional De Giorgi conjecture remains completely

open for dimensions 4 ≤ n ≤ 8 with s ∈ (0, 1
2
], along with various other extended De Giorgi

conjectures in both lower and higher dimensions. We also note that in the systems case De Giorgi’s

conjecture is discussed by Fazly et al. in [23, 26] in lower dimensions.

Of immediate interest to the author for future study is the stability conjecture for the fractional

Allen-Cahn equation, in particular, the recent work of Figalli and Serra in dimension n = 3 and

s = 1
2

(see [28]). Note that when n = 2, for general s, it is considered by Sire and Valdinocci

in [57] and Gui and Li in [34]. The stability conjecture for a more general kernel it is discussed by

Hamel et al. in [37] and Fazly et al. in [24, 27]. Aside from this and the results presented prior,

the stability conjecture is wide open. The author is further interested in studying the geometric

perspectives of De Giorgi’s conjecture for the classical and fractional Laplacians, such as the work

in dimensions 4 ≤ n ≤ 8 of Savin (see [49, 51]) and the work of del Pino et al. and Chan et al. in

higher dimensions (see [15, 16, 47]) and finite Morse index solutions (see [36, 59]). More broadly,

the author is keenly interested in pursuing study of related subjects in geometry, beginning with

Schoen’s and Uhlenbeck’s earlier work in harmonic maps (see [54, 56], for example), as well as

topics in local and nonlocal minimal surface theory having applications in mathematical physics

(e.g. phase transitions, general relativity).
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APPENDIX A: FUNCTION SPACES AND INEQUALITIES

In this section, we present some standard definitions, identities, and theorems that will be used

freely throughout this paper. We have assumed familiarity with techniques in analysis at the in-

troductory graduate level, as well as a working knowledge of the classical theory of PDE. Unless

otherwise stated, we will assume that Ω ⊂ Rn is open and that u : Ω → R. All of the following

material can be found in [21], [32], or [48].

A.1 Notation

Let α be a vector of the form α = (α1, . . . , αn), where each component αi is a nonnegative integer.

We say that α is a multiindex of order |α| = α1 + . . .+ αn. Given a multiindex α, we may define

Dαu(x) :=
∂|α|u(x)

∂xα1
1 · · · ∂xαnn

= ∂α1
x1
· · · ∂αnxn u(x).

In particular, if k is a nonnegative integer, we define

Dku(x) := {Dαu(x) : |α| = k},

that is, Dku(x) is the set of all partial derivatives of order k. By assigning an ordering to the

various partial derivatives, we me can regard Dku(x) as a point in Rnk . We define

|Dku| =
( ∑
|α|=k

|Dαu|2
) 1

2
.

For example, when k = 1, we regard the elements of Du as being arranged in a vector

Du := (ux1 , . . . , uxn) = ∇u,
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so that |Du| = |∇u|. Throughout this work, we will always regard Du as∇u. We write

ur :=
x

|x|
· ∇u

to denote the radial derivative of u.

When k = 2, we regard elements ofD2u as being arranged as in the Hessian matrix1. Thus, we

find that D2u ∈ Sn, the space of real symmetric n × n matrices (assuming appropriate regularity

on u).

In the body of this note, several constants will be introduced. In general, we let C denote an

arbitrary constant, letting it absorb extraneous factors when necessary. When the dependence of C

on parameters is important, or C is known explicitly, we have made it clear.

A.2 Function Spaces

Here, we discuss some fundamental function spaces encountered in this project. First, we consider

the Banach space of k times continuously differentiable functions on Ω

Ck(Ω) := {u : Ω→ Rn : u is continuous}

with their accompanied norms

‖u‖Ck(Ω) :=
k∑

n=0

sup
Ω
|Dku(x)|.

We can similarly define the space

Ck(Ω) := {u ∈ Ck(Ω) : Dαu is uniformly continuous on bounded subsets of Ω, for all |α| ≤ k}.

It follows that if u ∈ Ck(Ω), then Dαu extends continuously to Ω for each multiindex α satisfying

1Recall that the Hessian matrix of u is the matrix of second order partial derivatives of u.
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|α| ≤ k. Finally, we define

C∞(Ω) :=
∞⋂
k=0

Ck(Ω).

The space u ∈ C∞(Ω) is defined analogously. The space Ck
0 (Ω) denotes those functions in Ck(Ω)

with compact support (i.e. vanishing outside of a compact set).

The reader must necessarily be familiar with the Lebesgue spaces

Lp(Ω) := {u : Ω→ R : u is Lebesgue measurable, ‖u‖Lp(Ω) <∞}

where

‖u‖Lp(Ω) :=

(ˆ
Ω

|u|p dx

) 1
p

for 1 ≤ p < ∞. We note that the case p = 2 is of fundamental importance, since in this case we

obtain a Hilbert space with inner product

〈u, v〉L2(Ω) :=

ˆ
Ω

uv dx.

We will also consider the space

L∞(Ω) := {u : Ω→ R : u is Lebesgue measurable, ‖u‖L∞(Ω) <∞},

where

‖u‖L∞(Ω) := ess sup
Ω
|u|.

Sometimes, the integrability of a function u on the entirety of Ω is not necessary. As such, we will

concern ourselves with the spaces

Lploc(Ω) := {u : Ω→ R : u ∈ Lp(U) for each U open such that U ⊂⊂ Ω}.

Here, U ⊂⊂ Ω signifies the fact that U is open in Ω with compact closure entirely contained in Ω.
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The aforementioned material is all in the hopes of defining the Hölder Spaces and, most im-

portantly, the Sobolev spaces. We say that functions u : Ω→ R satisfying

|u(x)− u(y)| ≤ C|x− y|α

for each x, y ∈ Ω and 0 < α ≤ 1, C constant, are Hölder continuous with exponent α. The Hölder

space Ck,α(Ω) consists of all functions u ∈ Ck(Ω) for which the norm

‖u‖Ck,α(Ω) :=
∑
|β|≤k

∥∥Dβu
∥∥
C(Ω)

+
∑
β=k

[Dβu]C0,α(Ω) (A.1)

is finite and the α-th Hölder seminorm of u : Ω→ R is given by

[u]C0,α(Ω) := sup
x,y∈Ω
x 6=y

(
|u(x)− u(y)|
|x− y|α

)
.

In short, the spaceCk,α(Ω) consists of those functions u : Ω→ R that are k-times continuously

differentiable and whose k-th partial derivatives are bounded and Hölder continuous with exponent

α. Equipped with the norm (A.1), the space Ck,α(Ω) is a Banach space.

Of particular importance in the theory of PDE are the Sobolev spaces W k,p. To define these

spaces, we first need to define the notion of a weak derivative.

Definition A.2.1 (Weak Derivative). Suppose u, v ∈ L1
loc(Ω) and α is a multiindex. We say that

v ∈ L1
loc(Ω) is the α-th weak partial derivative of u, written

Dαu = v,

provided ˆ
Ω

uDαφ dx = (−1)|α|
ˆ

Ω

vφ dx

for all test functions φ ∈ C∞0 (Ω).
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This definition is motivated by the integration by parts formula for a function u ∈ Ck(Ω).

Indeed, for such a u and a multiindex α = (α1, . . . , αn) of order k, we find

ˆ
Ω

uDαφ dx = (−1)|α|
ˆ

Ω

Dαuφ dx

by the integrattion by parts formula, since φ ∈ C∞0 (Ω) has compact support.

Alas, we define the Sobolev spaces W k,p. Fix 1 ≤ p ≤ ∞ and let k be a nonnegative integer.

Definition A.2.2. The Sobolev space W k,p(Ω) consists of all locally integrable functions u : Ω→

R such that, for each multiindex α with |α| ≤ k, Dαu exists in the weak sense and belongs to

Lp(Ω).

Note that elements ofW k,p(Ω) need not be continuous or bounded in Ω. Moreover, when n = 1

and Ω is an open interval in R, we see that u ∈ W 1,p(Ω) if and only if u equals a.e. an absolutely

continuous function whose ordinary derivative (which exists a.e.) belongs to Lp(Ω).

When coupled with the norm

‖u‖Wk,p(Ω) :=


(∑

|α|≤k
´

Ω
|Dαu|p dx

) 1
p
, 1 ≤ p <∞∑

|α|≤k ess supΩ |Dαu|, p =∞,

the space W k,p(Ω) is a Banach space. As an explicit example, it can be shown that the W 1,p(Ω)

norm is equivalent to

‖u‖W 1,p(Ω) :=
(
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω)

) 1
p
,

the gradient being defined in the weak sense.

When p = 2 we obtain a Hilbert space and write Hk(Ω) = W k,2(Ω). We denote by W k,p
0 (Ω)

the closure of C∞0 (Ω) in W k,p(Ω) and identify W k,p
0 (Ω) as those functions u ∈ W k,p(Ω) such that

Dαu = 0 on ∂Ω for all |α| ≤ k − 1. Naturally, issues arise since we identify functions in W k,p(Ω)

which agree a.e. and ∂Ω may have Lebesgue measure zero. It is therefore vital for us to consider

the trace operator (see [21] for the basic trace theory).
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It is worthwhile to note that, in a general domain Ω, we are only guaranteed approximation

by smooth functions in W k,p
loc (Ω). However, imposing the condition that Ω is bounded allows for

approximation by smooth functions in W k,p(Ω). If we further require that ∂Ω is C1, then we can,

in addition, assume our approximating functions are of class C∞(Ω).

We have denoted the Schwarz space of rapidly decaying C∞ functions in Rn by S (Rn).

Definition A.2.3. The Schwarz space of rapidly decaying C∞ functions u : Rn → R is given by

S (Rn) := {u ∈ C∞(Rn) : ‖u‖α,β <∞}

where α = (α1, . . . , αn), β = (β1, . . . , βn) are multiindices. The norm ‖u‖α,β is given by

‖u‖α,β := sup
x∈Rn
|xαDβu(x)|. (A.2)

Here, xα is defined as the product xα = xα1
1 · · ·xαnn .

We may then define the set of all tempered distributions S ′(Rn), the topological dual of

S (Rn), to be the set of all distributions2 T such that T (uk) → 0 whenever limk→∞ ‖uk‖α,β = 0,

where {uk}k∈N is a sequence defined on S (Rn).

The relationship between the Sobolev space Hk and the Fourier transform is established by the

following theorem:

Theorem A.2.1 (Characterization of Hk via Fourier Transform). Let k be a nonnegative integer.

1. A function u ∈ L2(Rn) belongs to Hk(Rn) if and only if

(1 + |ξ|k)û ∈ L2(Rn).

2. In addition, there exists a positive constant C such that

1

C
‖u‖Hk(Rn) ≤

∥∥(1 + |ξ|k)û
∥∥
L2(Rn)

≤ C‖u‖Hk(Rn)

2For more on the general theory of distributions and its applications in PDE, see [21] or [48].
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for each u ∈ Hk(Rn).

In the body of this thesis, we present an analogous result for the fractional Sobolev space

W s,p(Ω), with 0 < s < 1.

A.3 Some Useful Inequalities

For continuity, we include some fundamental inequalities from real analysis that we employ through-

out the project.

We begin with Cauchy’s Inequality:

ab ≤ a2

2
+
b2

2
(A.3)

for each a, b ∈ R. This follows immediately from the inequality (a − b)2 ≥ 0. We now suppose

1 < p and q <∞ is such that 1
p

+ 1
q

= 1. Then Young’s inequality asserts

ab ≤ ap

p
+
bq

q
(A.4)

whenever a, b > 0. This can be seen by noting that the mapping x 7→ ex is convex.

The reader may be familiar with Hölder’s inequality, which says that, for 1 ≤ p and q ≤ ∞

with 1
p

+ 1
q

= 1. Then, if u ∈ Lp(Ω) and v ∈ Lq(Ω), we have

ˆ
Ω

|uv| dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω). (A.5)

Indeed, by homogeneity, we may assume that u and v are normalized so that ‖u‖Lp(Ω) = ‖v‖Lq(Ω) =

1. Then we may apply Young’s inequality for 1 < p and q <∞ to |uv| and integrate over Ω to get

the result. The case p = 1 and q =∞ is a bit more technical and we leave out the details.

For 1 ≤ p and u, v ∈ Lp(Ω), we find

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω). (A.6)

126



This is referred to as Minkowski’s inequality and, in effect, establishes the triangle inequality for

the Banach space Lp(Ω). This follows from applying Hölder’s inequality with q = p
p−1

. By similar

methods, we may obtain the discrete analogous of these inequalities for the sequence spaces `p(Rn)

(or, more generally, `p(Cn)).

The Sobolev inequalities are useful tools for establishing additional regularity of functions in

certain Sobolev spaces. We first state Morrey’s inequality:

Theorem A.3.1 (Morrey’s Inequality). Assume n < p ≤ ∞. Then there exists a constant C =

C(n, p) such that

‖u‖C0,α(Rn) ≤ C‖u‖W 1,p(Rn)

for all u ∈ C1(Rn), where

α := 1− n

p
.

With Morrey’s inequality in mind, it is natural to wonder if more general estimates can be

obtained which are applicable for more general domains. It turns out that they can.

Theorem A.3.2 (General Sobolev Inequalities). Let Ω be a bounded open subset of Rn, with a C1

boundary. Assume u ∈ W k,p(Ω).

1. If k < n
p
, then u ∈ Lq(Ω), where

1

q
=

1

p
− k

n
.

In addition, we have the estimate

‖u‖Lq(Ω) ≤ C‖u‖Wk,p(Ω),

where C = C(k, p, n,Ω).
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2. If k < n
p
, then u ∈ Ck−[n

p
]−1,α(Ω), where

α =


[n
p
] + 1− n

p
, if n

p
/∈ Z

Any positive number < 1, if n
p
∈ Z.

In addition, we have the estimate

‖u‖
C
k−[np ]−1,α

(Ω)
≤ C‖u‖Wk,p(Ω),

where C = C(k, p, n, α,Ω).

In particular, if u ∈ W k,p(Ω) for all p > n, then u ∈ Ck−1,α for all α ∈ (0, 1).
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APPENDIX B: ELLIPTIC OPERATORS AND NOTIONS OF SOLUTIONS

Here, we define elliptic operators, along other related concepts and conventions. We also define

various notions of solutions we have used in this project. For a detailed presentation of these

concepts, we highly recommend [21] or [32].

B.1 Elliptic Operators

A second-order partial differential operator takes the form

Lu = −
n∑

i,j=1

(aij(x)uxi)xj +
n∑
i=1

bi(x)uxi + c(x)u (B.1)

or

Lu = −
n∑

i,j=1

aij(x)uxixj +
n∑
i=1

bi(x)uxi + c(x)u (B.2)

for given coefficient functions aij, bi, c and i, j = 1, . . . , n. The PDE Lu = f is in divergence

form if L is given by (B.1) and is in nondivergence form if it is given by (B.2). If the highest

order coefficients aij are C1 for each i, j = 1, . . . , n, then an operator given in divergence form

can be rewritten into nondivergence form, and vice versa. The divergence form is more natural for

energy methods, due to integration by parts, and the nondivergence form is more appropriate for

maximum principle techniques. As is customary, we assume the symmetry condition aij = aji for

all i, j = 1, . . . , n. The following definition is vital.

Definition B.1.1. We say that the partial differential operator L is (uniformly) elliptic if there exists

a constant θ > 0 such that
n∑

i,j=1

aijξiξj ≥ θ|ξ|2 (B.3)

for a.e. x ∈ Ω and all ξ ∈ Rn.

In particular, this means that for each x ∈ Ω, the symmetric n × n matrix A(x) = (aij(x))

is positive definite, with smallest eigenvalue greater than or equal to θ. The classical example of
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such an operator is the Laplacian1 operator L = −∆. As one might expect, solutions of general

second-order elliptic PDE Lu = 0 are similar to harmonic functions.

B.2 Notions of Solutions

In PDE, it is common to consider many notions of solutions since it is not always the case that a C2

solution exists to a given problem. In addition, it is not even necessary in applications to require

our solutions be C2. The abstract definitions that follow further allow us to take advantage of the

Banach and Hilbert space theory.

We consider the boundary-value problem


Lu = f in Ω

u = 0 on ∂Ω.

(B.4)

Classical solutions are C2 solutions satisfying the PDE and the boundary condition in the usual

pointwise sense. Strong solutions are solutions belonging to the Sobolev spaceH2(Ω). The PDE is

satisfied in the pointwise sense, a.e. with respect to the Lebesgue measure in Ω, while the boundary

condition is satisfied in the sense of traces. Distributional solutions are solutions belonging only

L1
loc(Ω) and the equation holds in the distributional sense. More delicate is the notion of a weak

solution. Suppose that aij, bi, c ∈ L∞(Ω) for each i, j = 1, . . . , n and f ∈ L2(Ω). Then the

bilinear form B : H1
0 (Ω) × H1

0 (Ω) → R associated with the divergence form of the elliptic

operator L is ˆ
Ω

n∑
i,j=1

aijuxivxj +
n∑
n=1

biuxiv + cuv dx

for u, v ∈ H1
0 (Ω). We say that u ∈ H1

0 (Ω) is a weak solution of the boundary value problem (B.4)

if

B[u, v] = 〈f, v〉L2(Ω)

1To see this, simply note that we may write aij = δij for each i, j = 1, . . . , n.
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for all v ∈ H1
0 (Ω). This is also referred to as the variational formulation of (B.4). Note that if we

require u = g on ∂Ω in the sense of traces and with ∂Ω of classC1, we may recast the problem with

zero boundary conditions. The existence and uniqueness of weak solutions is given by a result from

functional analysis, the Lax-Milgram theorem. There are other existence and uniqueness theorems

for when the hypotheses of the Lax-Milgram theorem are not met, yet we mention only this one

due to its significance and applicability.
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APPENDIX C: SPECIAL FUNCTIONS AND INTEGRAL IDENTITIES

The material presented here has been adapted from [30]. For a more thorough treatment of the

proceeding topics, we refer the reader to the text of Gerald B. Folland ( [29]),

We begin by recalling Euler’s gamma function.

Γ(x) =

ˆ ∞
0

tx−1e−t dt,

defined for x > 0. One can very that the identity Γ(1
2
) is simply a reformulation of the famous

identity ˆ
R
e−x

2

dx =
√
π.

Γ(z) can be similarly defined as a holomorphic function for each z ∈ C such that Re(z) > 0.

For such z, one has

Γ(z + 1) = zΓ(z). (C.1)

Formula (C.1) and its iterations can be used to meromorphically extend Γ(z) to the entire complex

plane having simple poles at z = −k, for k ∈ N ∪ {0}, with residues (−1)k. Fix 0 < s < 1. Of

particular importance for our considerations is the identity

Γ(1− s) = −sΓ(−s) (C.2)

which can be obtained from (C.1). Furthermore, we have

Γ(z)Γ(1− z) =
π

sin πz
, (C.3)

and

22z−1Γ(z)Γ
(
z +

1

2

)
=
√
πΓ(2z). (C.4)

Part of the significance of the gamma function is its relationship to the (n − 1)-dimensional
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Hausdorff measure of the unit sphere Sn−1 ⊂ Rn, and the n-dimensional volume of the unit ball

σn−1 =
2π

n
2

Γ(n
2
)

(C.5)

and

ωn =
σn−1

n
=

π
n
2

Γ(n
2

+ 1)
, (C.6)

respectively.

Deeply connected to the gamma function is Euler’s beta function, denoted B = B(x, y) and

defined for z = x+ iy in the first quadrant of the complex plane by

B(x, y) = 2

ˆ π
2

0

(cos(v))2x−1(sin(v))2y−1 dv. (C.7)

Applying the change of variable s 7→ (sin(v))2, we may alternatively write

B(x, y) =

ˆ 1

0

(1− s)x−1sy−1 ds. (C.8)

The beta function is related to the gamma function by the formula

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (C.9)

Moreover, the following useful integral identity holds:

Proposition C.0.1 (see [30]). Let b > −n and a > n+ b, then

ˆ
Rn

|x|b

(1 + |x|2)
a
2

dx =
π
n
2

Γ(n
2
)

Γ( b+n
2

)Γ(a−b−n
2

)

Γ(a+b
2

)
. (C.10)

In particular, if b = 0 and a = n+ 1, then

ˆ
Rn

dx

(1 + |x|2)
n+1

2

=
π
n+1

2

Γ(n+1
2

)
. (C.11)
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For every ν ∈ C satisfying Re(ν) > −1
2
, we define the Bessel function of the first kind and of

complex order ν by the formula

Jν(z) =
1

Γ(1
2
)Γ(ν + 1

2
)

(z
2

)ν ˆ 1

−1

eizt(1− t2)
2ν−1

2 dt. (C.12)

We may also write Jν as a power series by

Jν(z) =
∞∑
k=0

(−1)k
( z

2
)ν+2k

Γ(k + 1)Γ(k + ν + 1)
(C.13)

where |z| <∞ and | arg(z)| < π.

Jν arises as the solution to the Bessel equation of order ν:

z2 ∂
2

∂z2
J +

∂

∂z
J + (z2 − ν2)J = 0. (C.14)

When ν /∈ Z, we obtain a second linearly independent solution to (C.14), J−ν . Note that

z−νJν(z)→ 2−ν+1

Γ(1
2
)Γ(ν + 1

2
)

ˆ 1

0

(1− s2)
2ν−1

2 ds (C.15)

=
2−ν+1

Γ(1
2
)Γ(ν + 1

2
)
B
(
ν +

1

2
,
1

2

)
,

as z → 0. Furthermore, we have the asymptotic estimate for the Bessel function:

Jν(z) ∼=
2−ν

Γ(ν + 1)
zν (C.16)

One may also consider the generalized Bessel equation:

y2u′′(y) + (1− 2α)yu′(y) + [β2γ2y2γ + (α2 − ν2γ2)]u(y) = 0. (C.17)

Let Φ(z) be a solution to the Bessel equation (C.14) and consider the function defined by the
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transformation

u(y) = yαΦ(βyγ). (C.18)

Then, by direct computation, one may verify that u(y) solves the generalized Bessel equation

(C.17). These facts will be used in the computation for the Poisson kernel for the harmonic exten-

sion problem in Rn+1+a.

Now, consider the modified Bessel equation of order ν, ν ∈ C, given by

z2 ∂
2

∂z2
Φ + z

∂

∂z
Φ− (z2 + ν2)Φ = 0, (C.19)

with linearly independent solutions given by the modified Bessel function of the first kind

Iν(z) =
∞∑
k=0

( z
2
)ν+2k

Γ(k + 1)Γ(k + ν + 1)
, (C.20)

(|z| <∞ and | arg(z)| < π) and the modified Bessel function of the third kind

Kν(z) =
π

2

I−ν(z)− Iν(z)

sinπν
, (C.21)

with | arg(z)| < π, ν /∈ Z. As before, we also have the generalized modified Bessel equation

y2u′′(y) + (1− 2α)yu′(y) + [(α2 − ν2γ2)− β2γ2y2γ]u(y) = 0, (C.22)

with solutions determined by u(y) in (C.18). Of course, in this case we assume that Φ(z) solves

the modified Bessel equation (C.19). We will need the following asymptotics for Iν(z) and I−ν(z),

found on page 108 of [39]: As z → 0 we have

Iν(z) ∼=
1

Γ(ν + 1)

(z
2

)ν
(C.23)

135



and

I−ν(z) ∼=
1

Γ(1− ν)

(z
2

)−ν
. (C.24)

In computing the Poisson kernel for the extension problem, we will make use of the following

Fourier-Bessel representation.

Theorem C.0.1 (Fourier-Bessel Representation). Let u(x) = f(|x|), and suppose that

t 7→ t
n
2 Jn

2
−1(t) ∈ L1(R+),

where we have denoted by Jn
2
−1 the Bessel function of order ν = n

2
− 1 defined by (C.12). Then,

û(ξ) = 2π|ξ|−
n
2

+1

ˆ +∞

0

t
n
2 f(t)Jn

2
−1(2π|ξ|t) dt. (C.25)

The hypergeometric functions will also be of use to us. In order to introduce them, we recall

the definition of Pochamer’s symbols:

αk :=
Γ(α + k)

Γ(α)
= α(α + 1) · · · (α + k + 1),

for k ∈ N and α0 = 1. Notice that, since the gamma function has a pole at z = 0, we have

0k =


1 if k = 0,

0, if k ≥ 1.

We now let p, q ∈ N0 be such that p ≤ q + 1, and let α1, . . . , αp and β1, . . . , βq be given

parameters such that −βj /∈ N0 for j = 1, . . . , q. Given a number z ∈ C, the power series

pFq(α1, . . . , αp; β1, . . . , βq; z) =
∞∑
k=0

(α1)k . . . (αp)k
(β1)k . . . (βq)k

zk

k!
(C.26)

is called the generalized hypergeometric function. When p = 2 and q = 1, the function 2F1(α1, . . . , α2; β1; z)
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is Gauss’ hypergeometric function, typically denoted by F (α1, . . . , α2; β1; z).

By the ratio test, one finds that the radius of convergence of the hypergeometric series is ∞

when p ≤ q, however, equals 1 when p = q + 1. Moreover, we have the following facts:

• F (α, 0; β; z) = F (0, α; β; z) = 1 and

• F (α, β; β;−z) = 1F0(α;−z) = (1 + z)−α.

Interestingly, the hypergeometric function 0F1 is essentially a Bessel function, up to powers

and rescaling. In fact, we have

Iν(z) =
1

Γ(ν + 1)

(z
2

)ν
0
F1

(
ν + 1;

(z
2

)2
)
. (C.27)

Finally, we have the following integral identities:

1. For ν − λ+ 1 > |µ|

ˆ ∞
0

t−λKµ(at)Jν(bt) dt =
bνΓ(ν−λ+µ+1

2
)Γ(ν−λ−µ+1

2
)

2λ+1aν−λ+1Γ(1 + ν)
·

F
(ν − λ+ µ+ 1

2
,
ν − λ− µ+ 1

2
; ν + 1;− b

2

a2

)
. (C.28)

2. For any β, γ satisfying Re(β) > 0 and Re(γ) > 0 we have

ˆ ∞
0

tν−1e−(β
t

+γt) dt = 2
(β
γ

) ν
2
Kν(2

√
βγ). (C.29)

These can be found on page 693 and page 340 of [33], respectively.
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APPENDIX D: REGULARITY AND MAXIMUM PRINCIPLES FOR THE

EXTENSION PROBLEM

In this chapter, we list some essential regularity results along with some maximum principles and

related theorems for the extension problem. All of these results can be found in [9]. As a result,

the following results are stated for the problem (4.18). However, each result has an analogous

statement for the problem (4.5) due to the equivalency of problems (4.5) and (4.18) discussed in

the introduction of Chapter 4.

D.1 Regularity

We list some regularity results we have used for the extension problem introduced in Chapter 2.

Proposition D.1.1 (Lemma 4.4 in [9]). Let f ∈ C1,α(R) with α > max(0, 1− 2s). Suppose u is a

bounded solution of

(−∆)su = f(u) in Rn.

Then, u ∈ C2,β(Rn) for some β ∈ (0, 1), where β depends only on s and α.

Furthermore, given s0 >
1
2
, there exists β ∈ (0, 1) depending only on n, s0, and α (and hence

independent of s) such that for every s > s0,

‖u‖C2,β(Rn) ≤ C

for some constant C depending only on n, s0, ‖f‖C1,α , and ‖u‖L∞(Rn) (and hence independent of

s ∈ (s0, 1)).

In addition, the function defined by v = Ps ∗ u, where Ps is the Poisson kernel given by (2.38),

satisfies the estimate for every s > s0

‖v‖
Cβ(Rn+1

+ )
+ ‖∇xv‖Cβ(Rn+1

+ )
+
∥∥D2

xv
∥∥
Cβ(Rn+1

+ )
≤ C
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for some constant C independent of s ∈ (s0, 1). In fact, C depends only on n, s0, ‖f‖C1,α , and

‖u‖L∞(Rn).

We also have the following gradient estimates for the extension problem.

Proposition D.1.2. Let f ∈ C1,α(R) with α > max{0, 1 − 2s} and suppose v ∈ L∞(Rn+1
+ ) is

a weak solution of problem (4.18). Then, ∇xv and yavy belong to L∞(Rn+1
+ ). In addition, given

s0 >
1
2
, there exists a constant C1 depending only on n, s0, ‖f‖C1,α , and ‖v‖L∞(Rn+1

+ ) such that,

for every s > s0, we have

‖∇xv‖L∞(Rn+1
+ ) + (1 + a)‖yavy‖L∞(Rn+1

+ ) ≤ C1. (D.1)

Furthermore, we have

|∇v(x, y)| ≤ C2

y
for y > 0, (D.2)

where C2 is uniformly bounded for a ∈ (−1, 1) (i.e. s ∈ (0, 1)). As a consequence of (D.1) and

(D.2), we have

ya|∇v|2 ∈ L1
loc(Rn+1

+ ). (D.3)

The next result is concerned with solutions of (4.18) having limits in one variable (e.g. layer

solutions).

Proposition D.1.3. Let v be a bounded solution of (4.18) such that

lim
xn→±∞

v(x, 0) = L± (D.4)

for every (x1, . . . , xn−1) ∈ Rn−1 and some constants L±. Then,

f(L+) = f(L−) = 0 (D.5)

and

lim
xn→±∞

v(x, y) = L± (D.6)
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for every (x1, . . . , xn−1) ∈ Rn−1 and y ≥ 0. Moreover, for every fixedR > 0 and (x1, . . . , xn−1) ∈

Rn−1, we have

∥∥v − L±∥∥
L∞(B+

R(x,0))
→ 0 as xn → ±∞, (D.7)

‖∇xv‖L∞(B+
R(x,0)) → 0 as xn → ±∞, and (D.8)

‖yavy‖L∞(B+
R(x,0)) → 0 as xn → ±∞. (D.9)

D.2 Maximum Principles

Proposition D.2.1 (Maximum Principle for La; Remark 4.2 in [9]). The following weak and strong

maximum principles hold for the operator La:

1. (Weak Maximum Principle). The standard weak maximum principle holds for weak solutions

of (5.49). More generally, if u weakly solves


−Lau ≥ 0 in B+

r ,

−yauy ≥ 0 on Γ0
r,

u ≥ 0 on Γ+
r ,

(D.10)

then u ≥ 0 in B+
r .

2. (Strong Maximum Principle). Moreover, either u ≡ 0 or u > 0 in B+
r ∪ Γ0

r .

Remark D.2.1. The same weak and strong maximum principles hold in other bounded domains

of Rn+1
+ other than B+

r . In fact, their proofs are essentially the same, requiring only minor adjust-

ments. Moreover, the maximum principles also hold for the Dirichlet problem in B+
r , obtained by

replacing the Neumann condition in (5.52) with u ≥ on Γ0
r .

The next result is a Hopf boundary lemma for the operator La.

Lemma D.2.1 (Hopf Lemma; Proposition 4.11 in [9]). Let a ∈ (−1, 1) and consider the cylinder

Cr,1 := Γ0
r × (0, 1) ⊂ Rn+1

+ where Γ0
r is the ball centered at the origin of radius r in Rn. Let
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u ∈ C(Cr,1) ∩H1(Cr,1, ya) satisfy


Lau ≤ 0 in Cr,1,

u > 0 in Cr,1,

u(0, 0) = 0.

(D.11)

Then,

lim sup
y→0+

−yau(0, y)

y
< 0. (D.12)

In addition, if yauy ∈ C(Cr,1), then

∂νau(0, 0) < 0. (D.13)

We note that, since we have assumed a = 1− 2s with s ∈ (0, 1), the hypothesis a ∈ (−1, 1) is

met. Furthermore, the space H1(Cr,1, ya) denotes the Sobolev space H1(Ω), where Ω := Cr,1 and

integration is respect to the measure ya dx dy, with dx dy being the standard Lebesgue measure on

Rn.

We also have a Harnack inequality.

Proposition D.2.2 (Harnack Inequality; Theorem 3.4 in [9]). Let u be a positive solution of Lau =

0 inB4r(x0) ⊂ Rn+1. Then, supBr(x0) u ≤ C infBr(x0) u for some constant C = C(n, a) depending

only on n and a. As a consequence, bounded solutions of Lau = 0 in all of Rn+1 are constant.
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