
Homework 1 Solutions

1. Recall that, since m(A) > 0, the set A − A contains an interval I centered at the origin. We know
that 2−n ∈ I for large n ∈ N. Since I ⊂ A− A, we can thereby choose x, y ∈ A with x− y = 2−n. In
particular, |x− y| = 2−n so the proof is complete.

2. (a) We first prove the right-to-left direction. Suppose A ∈ A is µ-null. For each n ∈ N, choose δn
such that if B ∈ A satisfies µ(B) < δn, then ν(B) < n−1. Since µ(A) < δn for each n we must
have ν(A) < n−1 for each n implying ν(A) = 0. That is, ν is absolutely continuous with respect
to µ.

Suppose now that ν is absolutely continuous with respect to µ. If the ϵ − δ condition is not
satisfied, there is an ϵ > 0 such that for each n ∈ N we can find En ∈ A with µ(En) < 2−n and
ν(En) ≥ ϵ. Let Fk := ∪∞

k En and F = ∩∞
1 Fk. Then

µ(Fk) <

∞∑
k

2−n = 21−k,

so µ(F ) = 0. On the other hand, ν(Fk) ≥ ϵ for each k and, since ν is finite, ν(F ) = lim ν(Fk) ≥ ϵ
contradicting that ν is absolutely continuous with respect to µ.

(b) Let (X,M, µ) = (R,L,m) and define ν(A) :=
∫
A
x−2 dm for Lebesgue measurable A. Then ν is

a measure that is absolutely continuous with respect to m and ν([−ϵ, ϵ]) = ∞ for every ϵ > 0 so
the left-to-right implication in part (a) does not hold.

Remark: This is closely related to the Radon-Nikodym Theorem, which we will study later in the
quarter. The intuition is that if ν is absolutely continuous with respect to µ and finite, then we may
write

ν(A) =

∫
A

f dµ for some nonnegative f ∈ L1(µ).

Notice that this expression for ν implies the left-to-right implication immediately.

3. By Fatou’s Lemma, we have ∫
R
|f(x)| dx ≤ lim inf

n→∞

∫
R
|fn(x)| dx < ∞

since the fn are bounded in L1(R). Hence, f ∈ L1(R). Applying Fatou’s Lemma once more, we find∫
R
|f(x)| dx ≤ lim inf

n→∞

(∫
R
|fn(x)| dx−

∫
R
|fn(x)− f(x)| dx

)
.

On the other hand, the reverse triangle inequality applied to the second term on the right-hand side
of the inequality above shows∫

R
|fn(x)| dx−

∫
R
|fn(x)− f(x)| dx ≤

∫
R
|fn(x)| dx−

(∫
R
|fn(x)| dx−

∫
R
|f(x)| dx

)
=

∫
R
|f(x)| dx.

Hence,

lim sup
n→∞

(∫
R
|fn(x)| dx−

∫
R
|fn(x)− f(x)| dx

)
≤

∫
R
|f(x)| dx.

Combining this with the inequality for the lim inf above concludes the proof.
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4. If f is continuous on [0, 1], then there is an M > 0 such that |f(x)| ≤ M for all x ∈ [0, 1]. Since
xnf(x) → 0 almost everywhere on [0, 1] and f ∈ L1([0, 1]) by continuity, the dominated convergence
theorem shows that

lim
n→∞

∫ 1

0

xnf(x) dx = 0.

Now, for each n, k ∈ N we may write

n

∫ 1

0

xnf(x) dx = n

∫ 1− 1
k

0

xnf(x) dx+ n

∫ 1

1− 1
k

xnf(x) dx.

Let ϵ > 0 be given and choose k ∈ N so large that |1− x| < 1
k implies

−ϵ < f(x)− f(1) < ϵ.

We estimate the terms in the sum above individually. We have

n

∫ 1− 1
k

0

xnf(x) dx ≤ n
(
1− 1

k

)n

M → 0 as n → ∞.

On the other hand,

n

∫ 1

1− 1
k

xnf(x) dx ≤ n

∫ 1

1− 1
k

xn(f(x)− f(1)) + n

∫ 1

1− 1
k

xnf(1) dx dx

≤ (ϵ+ f(1))n

∫ 1

1− 1
k

xn dx

= (ϵ+ f(1))
n

n+ 1

(
1−

(
1− 1

k

)n+1)
.

Taking the lim sup as n → ∞ and combining with the previous inequalities gives

lim sup
n→∞

(
n

∫ 1

1− 1
k

xnf(x) dx
)
≤ ϵ+ f(1).

Similarly,

lim inf
n→∞

(
n

∫ 1

1− 1
k

xnf(x) dx
)
≥ f(1)− ϵ.

Since this holds for each ϵ > 0, combining with the previous inequalities shows

f(1) ≤ lim inf
n→∞

(
n

∫ 1

0

xnf(x) dx
)
≤ lim sup

n→∞

(
n

∫ 1

0

xnf(x) dx
)
≤ f(1).

Hence, the limit exists and is equal to f(1).

5. Fix t ∈ R \ {0} and a ∈ R. The idea is to control the growth of the integral in question on annuli
emanating from the origin. We have∫

R
|f(x)||g(tx)| dx =

∞∑
1

∫
n−1≤|x|≤n

|f(x)||g(xt)| dx ≤
∞∑
1

e−|t|(n−1)

∫
n−1≤|x|≤n

|f(x)| dx.

In addition, the growth assumption on the integral of f gives

e−|t|(n−1)

∫
n−1≤|x|≤n

|f(x)| dx ≤ e−|t|(n−1)

∫
|x|≤n

|f(x)| dx ≤ e−|t|(n−1)na.

To conclude, simply note that the series

∞∑
1

e−|t|(n−1)na

converges by the ratio test. Hence, f(x)g(tx) ∈ L1(R).
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