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Homework 1 Solutions

Recall that, since m(A) > 0, the set A — A contains an interval I centered at the origin. We know
that 2™ € [ for large n € N. Since I C A — A, we can thereby choose z,y € A with z —y =27". In
particular, |z — y| = 27™ so the proof is complete.

(a) We first prove the right-to-left direction. Suppose A € A is p-null. For each n € N, choose §,
such that if B € A satisfies u(B) < &,, then v(B) < n~!. Since u(A) < §, for each n we must
have v(A) < n~! for each n implying v(A) = 0. That is, v is absolutely continuous with respect
to p.

Suppose now that v is absolutely continuous with respect to p. If the ¢ — § condition is not
satisfied, there is an € > 0 such that for each n € N we can find E,, € A with p(E,) < 27" and
v(E,) > e. Let Fy, := U E, and F = N{°F). Then

p(Fy) <y 27 =217k,
k

so u(F) = 0. On the other hand, v(F}) > € for each k and, since v is finite, v(F) = limv(Fy) > €
contradicting that v is absolutely continuous with respect to p.

(b) Let (X, M, p) = (R,£,m) and define v(A) := [, 272 dm for Lebesgue measurable A. Then v is
a measure that is absolutely continuous with respect to m and v([—¢, €]) = oo for every € > 0 so
the left-to-right implication in part (a) does not hold.

Remark: This is closely related to the Radon-Nikodym Theorem, which we will study later in the
quarter. The intuition is that if v is absolutely continuous with respect to p and finite, then we may
write

v(A) = / f dp for some nonnegative f € L'(u).
A
Notice that this expression for v implies the left-to-right implication immediately.

By Fatou’s Lemma, we have

/|f(:c)|dac§hminf/|fn(x)|d;1:<oo
R n—oo R

since the f,, are bounded in L!(R). Hence, f € L'(R). Applying Fatou’s Lemma once more, we find

@l de <tmint ([ 1fa@ldo = [ 1fala) = f@)]de).

On the other hand, the reverse triangle inequality applied to the second term on the right-hand side
of the inequality above shows

[ i@l = [ 1@ = 1@lde < [ fu@lde= ([ 1fa@]de= [ (@) ds)
- [ @) da.

timsup ([ [fu@)ldo = [ 11.0) = f@)ldo) < [ |f@)]da.

Combining this with the inequality for the liminf above concludes the proof.

Hence,



4. If f is continuous on [0, 1], then there is an M > 0 such that |f(x)] < M for all z € [0,1]. Since
2" f(z) — 0 almost everywhere on [0,1] and f € L*([0,1]) by continuity, the dominated convergence

theorem shows that )

lim 2" f(x)dx = 0.

n— oo 0

Now, for each n,k € N we may write

n/olx”f(x)dm:n/ol_ka:"f(m)dx—i—n/li}c 2" f(x) du.

Let € > 0 be given and choose k € N so large that |1 — x| < % implies

—e< f(x)— f(1) <e

We estimate the terms in the sum above individually. We have
17% 1I\"
n/ x"f(x)dxgn(l—g) M — 0 as n — oc.
0

On the other hand,

S (- (1))

Taking the limsup as n — oo and combining with the previous inequalities gives
1
lim sup (n/ 2" f(x) dx> <e+ f(1).
n— 00 1_%

Similarly,

1i7{r_1>i£f (n/ll_lx"f(:n) dx> > f(1) -

Since this holds for each ¢ > 0, combining with the previous inequalities shows
1 1
f(1) <liminf (n/ " f(x) dx) < lim sup (n/ x" f(x) dx) < f(1).
n—oo 0 n—00 0

Hence, the limit exists and is equal to f(1).

5. Fix t € R\ {0} and a € R. The idea is to control the growth of the integral in question on annuli
emanating from the origin. We have

f@)|]g(tz)| dz = / g(zt)| de < e~ It n= 1)/ f(x)|dz.
[ r@llatea) Z o @) Z @

In addition, the growth assumption on the integral of f gives

efm(nfl)/ \f(2)] do < efm(nfl)/ |f(2)] dz < eI =Dpa.
n—1<|z|<n |z|<n

To conclude, simply note that the series

o0
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1

converges by the ratio test. Hence, f(z)g(tx) € L'(R).



