Homework 1 Solutions

1. Recall that, since $m(A)>0$, the set $A-A$ contains an interval I centered at the origin. We know that $2^{-n} \in I$ for large $n \in \mathbb{N}$. Since $I \subset A-A$, we can thereby choose $x, y \in A$ with $x-y=2^{-n}$. In particular, $|x-y|=2^{-n}$ so the proof is complete.
2. (a) We first prove the right-to-left direction. Suppose $A \in \mathcal{A}$ is μ-null. For each $n \in \mathbb{N}$, choose δ_{n} such that if $B \in \mathcal{A}$ satisfies $\mu(B)<\delta_{n}$, then $\nu(B)<n^{-1}$. Since $\mu(A)<\delta_{n}$ for each n we must have $\nu(A)<n^{-1}$ for each n implying $\nu(A)=0$. That is, ν is absolutely continuous with respect to μ.
Suppose now that ν is absolutely continuous with respect to μ. If the $\epsilon-\delta$ condition is not satisfied, there is an $\epsilon>0$ such that for each $n \in \mathbb{N}$ we can find $E_{n} \in \mathcal{A}$ with $\mu\left(E_{n}\right)<2^{-n}$ and $\nu\left(E_{n}\right) \geq \epsilon$. Let $F_{k}:=\cup_{k}^{\infty} E_{n}$ and $F=\cap_{1}^{\infty} F_{k}$. Then

$$
\mu\left(F_{k}\right)<\sum_{k}^{\infty} 2^{-n}=2^{1-k}
$$

so $\mu(F)=0$. On the other hand, $\nu\left(F_{k}\right) \geq \epsilon$ for each k and, since ν is finite, $\nu(F)=\lim \nu\left(F_{k}\right) \geq \epsilon$ contradicting that ν is absolutely continuous with respect to μ.
(b) Let $(X, \mathcal{M}, \mu)=(\mathbb{R}, \mathcal{L}, m)$ and define $\nu(A):=\int_{A} x^{-2} d m$ for Lebesgue measurable A. Then ν is a measure that is absolutely continuous with respect to m and $\nu([-\epsilon, \epsilon])=\infty$ for every $\epsilon>0$ so the left-to-right implication in part (a) does not hold.
Remark: This is closely related to the Radon-Nikodym Theorem, which we will study later in the quarter. The intuition is that if ν is absolutely continuous with respect to μ and finite, then we may write

$$
\nu(A)=\int_{A} f d \mu \text { for some nonnegative } f \in L^{1}(\mu)
$$

Notice that this expression for ν implies the left-to-right implication immediately.
3. By Fatou's Lemma, we have

$$
\int_{\mathbb{R}}|f(x)| d x \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}}\left|f_{n}(x)\right| d x<\infty
$$

since the f_{n} are bounded in $L^{1}(\mathbb{R})$. Hence, $f \in L^{1}(\mathbb{R})$. Applying Fatou's Lemma once more, we find

$$
\int_{\mathbb{R}}|f(x)| d x \leq \liminf _{n \rightarrow \infty}\left(\int_{\mathbb{R}}\left|f_{n}(x)\right| d x-\int_{\mathbb{R}}\left|f_{n}(x)-f(x)\right| d x\right) .
$$

On the other hand, the reverse triangle inequality applied to the second term on the right-hand side of the inequality above shows

$$
\begin{aligned}
\int_{\mathbb{R}}\left|f_{n}(x)\right| d x-\int_{\mathbb{R}}\left|f_{n}(x)-f(x)\right| d x & \leq \int_{\mathbb{R}}\left|f_{n}(x)\right| d x-\left(\int_{\mathbb{R}}\left|f_{n}(x)\right| d x-\int_{\mathbb{R}}|f(x)| d x\right) \\
& =\int_{\mathbb{R}}|f(x)| d x
\end{aligned}
$$

Hence,

$$
\limsup _{n \rightarrow \infty}\left(\int_{\mathbb{R}}\left|f_{n}(x)\right| d x-\int_{\mathbb{R}}\left|f_{n}(x)-f(x)\right| d x\right) \leq \int_{\mathbb{R}}|f(x)| d x
$$

Combining this with the inequality for the liminf above concludes the proof.
4. If f is continuous on $[0,1]$, then there is an $M>0$ such that $|f(x)| \leq M$ for all $x \in[0,1]$. Since $x^{n} f(x) \rightarrow 0$ almost everywhere on $[0,1]$ and $f \in L^{1}([0,1])$ by continuity, the dominated convergence theorem shows that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0
$$

Now, for each $n, k \in \mathbb{N}$ we may write

$$
n \int_{0}^{1} x^{n} f(x) d x=n \int_{0}^{1-\frac{1}{k}} x^{n} f(x) d x+n \int_{1-\frac{1}{k}}^{1} x^{n} f(x) d x
$$

Let $\epsilon>0$ be given and choose $k \in \mathbb{N}$ so large that $|1-x|<\frac{1}{k}$ implies

$$
-\epsilon<f(x)-f(1)<\epsilon
$$

We estimate the terms in the sum above individually. We have

$$
n \int_{0}^{1-\frac{1}{k}} x^{n} f(x) d x \leq n\left(1-\frac{1}{k}\right)^{n} M \rightarrow 0 \text { as } n \rightarrow \infty
$$

On the other hand,

$$
\begin{aligned}
n \int_{1-\frac{1}{k}}^{1} x^{n} f(x) d x & \leq n \int_{1-\frac{1}{k}}^{1} x^{n}(f(x)-f(1))+n \int_{1-\frac{1}{k}}^{1} x^{n} f(1) d x d x \\
& \leq(\epsilon+f(1)) n \int_{1-\frac{1}{k}}^{1} x^{n} d x \\
& =(\epsilon+f(1)) \frac{n}{n+1}\left(1-\left(1-\frac{1}{k}\right)^{n+1}\right)
\end{aligned}
$$

Taking the limsup as $n \rightarrow \infty$ and combining with the previous inequalities gives

$$
\limsup _{n \rightarrow \infty}\left(n \int_{1-\frac{1}{k}}^{1} x^{n} f(x) d x\right) \leq \epsilon+f(1)
$$

Similarly,

$$
\liminf _{n \rightarrow \infty}\left(n \int_{1-\frac{1}{k}}^{1} x^{n} f(x) d x\right) \geq f(1)-\epsilon
$$

Since this holds for each $\epsilon>0$, combining with the previous inequalities shows

$$
f(1) \leq \liminf _{n \rightarrow \infty}\left(n \int_{0}^{1} x^{n} f(x) d x\right) \leq \limsup _{n \rightarrow \infty}\left(n \int_{0}^{1} x^{n} f(x) d x\right) \leq f(1)
$$

Hence, the limit exists and is equal to $f(1)$.
5. Fix $t \in \mathbb{R} \backslash\{0\}$ and $a \in \mathbb{R}$. The idea is to control the growth of the integral in question on annuli emanating from the origin. We have

$$
\int_{\mathbb{R}}|f(x)||g(t x)| d x=\sum_{1}^{\infty} \int_{n-1 \leq|x| \leq n}|f(x)||g(x t)| d x \leq \sum_{1}^{\infty} e^{-|t|(n-1)} \int_{n-1 \leq|x| \leq n}|f(x)| d x
$$

In addition, the growth assumption on the integral of f gives

$$
e^{-|t|(n-1)} \int_{n-1 \leq|x| \leq n}|f(x)| d x \leq e^{-|t|(n-1)} \int_{|x| \leq n}|f(x)| d x \leq e^{-|t|(n-1)} n^{a}
$$

To conclude, simply note that the series

$$
\sum_{1}^{\infty} e^{-|t|(n-1)} n^{a}
$$

converges by the ratio test. Hence, $f(x) g(t x) \in L^{1}(\mathbb{R})$.

