Homework 2 Solutions

1. We first prove the desired limit when $f(x)=\chi_{(a, b)}(x)$ for some $a, b \in \mathbb{R}$ with $a<b$. We have

$$
\left|\int_{\mathbb{R}} e^{i x \xi} f(x) d x\right|=\left|\int_{a}^{b} e^{i x \xi} d x\right|=\frac{\left|e^{i b \xi}-e^{i a \xi}\right|}{\xi} \leq \frac{2}{\xi} \rightarrow 0 \text { as }|\xi| \rightarrow \infty
$$

Hence, the result holds for characteristic functions of open intervals. Suppose now that $f \in L^{1}(\mathbb{R})$ and let $\left\{\phi_{n}\right\}_{1}^{\infty}$ be a sequence of simple functions of the form

$$
\phi_{n}=\sum_{1}^{k} \chi_{\left(a_{n}^{j}, b_{n}^{j}\right)}
$$

approximating f in $L^{1}(\mathbb{R})$. Let $\epsilon>0$ and choose $N \in \mathbb{N}$ so large that $\left\|f-\phi_{n}\right\|_{1}<\epsilon$ for all $n \geq N$. Fix $n \geq N$. Then

$$
\begin{aligned}
\left|\int_{\mathbb{R}} e^{i x \xi} f(x) d x\right| & \leq\left|\int_{\mathbb{R}} e^{i x \xi}\left(f(x)-\phi_{n}(x)\right) d x\right|+\left|\int_{\mathbb{R}} e^{i x \xi} \phi_{n} d x\right| \\
& \leq\left\|f-\phi_{n}\right\|_{1}+\left|\int_{\mathbb{R}} e^{i x \xi} \phi_{n} d x\right| \\
& \leq \epsilon+\left|\int_{\mathbb{R}} e^{i x \xi} \phi_{n} d x\right|
\end{aligned}
$$

The second term in the sum tends to zero as $|\xi| \rightarrow \infty$ by what was proved first. Hence,

$$
\lim _{|\xi| \rightarrow 0}\left|\int_{\mathbb{R}} e^{i x \xi} f(x) d x\right| \leq \epsilon
$$

Since $\epsilon>0$ is arbitrary, the proof is complete.
Remark: This is called the Riemann-Lebesgue Lemma. It is a fundamental tool in Fourier analysis, which is a super cool subject you should totally learn if you are interested in analysis.
2. This is a consequence of the generalized dominated convergence theorem, which was proved in the homework last quarter (see Problem 20 on pg. 59 of the text). To apply the theorem, take $g_{n}:=\left|f_{n}\right|$ and $g:=|f|$. We can then conclude that $\left\|f_{n}-f\right\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$ by dominated convergence. Since

$$
\int_{E}\left|f_{n}(x)-f(x)\right| d x \leq\left\|f_{n}-f\right\|_{L^{1}}
$$

for every measurable $E \subset \mathbb{R}$, the L^{1} convergence of the f_{n} to f implies the convergence is uniform in the choice of measurable E.
3. We first consider the case when $f=\chi_{(a, b)}$. The general case will be obtained by approximation with simple functions in L^{1}. Suppose without loss of generality that $|h|>2(b-a)$. Direct computation shows

$$
\left|\chi_{(a, b)}(x+h)-\chi_{(a, b)}(x)\right|=\chi_{(a-h, b-h) \cup(a, b)}(x) .
$$

Since $(a-h, b-h)$ and (a, b) are disjoint, we get

$$
\int_{\mathbb{R}}\left|\chi_{(a, b)}(x+h)-\chi_{(a, b)}(x)\right| d x=2(b-a)=2 \int_{\mathbb{R}}\left|\chi_{(a, b)}(x)\right| d x
$$

It follows that, if ϕ is a simple function of the form

$$
\phi=\sum_{1}^{n} \chi_{\left(a_{n}, b_{n}\right)}
$$

and h is chosen so that $|h|$ is very large (depending on the a_{j}, b_{j}), that

$$
\int_{\mathbb{R}}|\phi(x+h)-\phi(x)| d x=2 \int_{\mathbb{R}}|\phi(x)| d x .
$$

Based on the above computation, we expect

$$
\lim _{|h| \rightarrow \infty} \int_{\mathbb{R}}|f(x+h)-f(x)| d x=2 \int_{\mathbb{R}}|f(x)| d x
$$

Let $\epsilon>0$, let $f \in L^{1}(\mathbb{R})$, and choose an L^{1} simple function ϕ such that $\|\phi-f\|_{L^{1}}<\epsilon$. We have:

$$
\begin{aligned}
\left|\int_{\mathbb{R}}(|f(x+h)-f(x)|-2|f(x)|) d x\right| & \leq\left|\int_{\mathbb{R}}(|f(x+h)-f(x)|-|\phi(x+h)-\phi(x)|) d x\right| \\
& +\left|\int_{\mathbb{R}}(|\phi(x+h)-\phi(x)|-2|f(x)|) d x\right| \\
& \leq \int_{\mathbb{R}}|f(x+h)-\phi(x+h)| d x+\int_{\mathbb{R}}|\phi(x)-f(x)| d x+ \\
& +\left|\int_{\mathbb{R}}(|\phi(x+h)-\phi(x)|-2|f(x)|) d x\right| \\
& \leq 2 \epsilon+\left|\int_{\mathbb{R}}(|\phi(x+h)-\phi(x)|-2|f(x)|) d x\right|
\end{aligned}
$$

Taking the limit as $|h| \rightarrow \infty$ on each side of the inequality above gives

$$
\begin{aligned}
\lim _{|h| \rightarrow \infty}\left|\int_{\mathbb{R}}(|f(x+h)-f(x)|-2|f(x)|) d x\right| & \leq 2 \epsilon+2\left|\int_{\mathbb{R}}(|\phi(x)|-|f(x)|) d x\right| \\
& \leq 2 \epsilon+2 \int_{\mathbb{R}}|\phi(x)-f(x)| d x \\
& \leq 4 \epsilon
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, it follows that the limit on the left-hand side of the inequality above is zero.
Remark: This problem demonstrates a good qual trick. If you need to first determine what the limit should be, try working out what the limit is when f is replaced by the characteristic function of a bounded open interval. Often times, this computation will be easy. To generalize, use approximation in L^{1} by simple functions.
4. Suppose that $\left\{f_{n}\right\}_{1}^{\infty}$ is a sequence of functions in $L^{1}(\mathbb{R})$ such that $f_{n} \rightarrow f$ pointwise a.e. on \mathbb{R} with $\left|f_{n}\right| \leq g \in L^{1}(\mathbb{R})$ for each $n \in \mathbb{N}$. Since $g \in L^{1}(\mathbb{R})$, given $\epsilon>0$ we may choose $r>0$ so large that

$$
\int_{|x|>r} g(x) d x<\delta
$$

By Egoroff's Theorem, there is a Lebesgue measurable subset of $\{|x| \leq r\}$ with $m(E)<\delta$ and $f_{n} \rightarrow f$ uniformly on $E^{c} \cap\{|x|>r\}$. Then

$$
\begin{aligned}
\int_{\mathbb{R}}\left|f_{n}(x)-f(x)\right| d x & =\int_{|x|>r}\left|f_{n}(x)-f(x)\right| d x+\int_{|x| \leq r}\left|f_{n}(x)-f(x)\right| d x \\
& \leq 2 \int_{|x|>r} g(x) d x+2 \int_{E} g(x) d x+\int_{E^{c} \cap\{|x| \leq r\}}\left|f_{n}(x)-f(x)\right| d x
\end{aligned}
$$

Since $g \in L^{1}(\mathbb{R})$, we can choose δ so small that the second term in the sum is less than ϵ. Hence,

$$
\int_{\mathbb{R}}\left|f_{n}(x)-f(x)\right| d x \leq 3 \epsilon+\int_{E^{c} \cap\{|x| \leq r\}}\left|f_{n}(x)-f(x)\right| d x .
$$

Taking the limit as $n \rightarrow \infty$ on each side of the inequality above and using that $f_{n} \rightarrow f$ uniformly on $E^{c} \cap\{|x| \leq r\}$ shows that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}}\left|f_{n}(x)-f(x)\right| d x \leq 3 \epsilon
$$

Since $\epsilon>0$ is arbitrary, we conclude that $f_{n} \rightarrow f$ in $L^{1}(\mathbb{R})$ and, consequently, that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(x) d x=\int_{\mathbb{R}} f(x) d x
$$

5. Observe that

$$
\mu\left(E_{j}\right)=\mu\left(\left\{x:\left|\chi_{E_{j}}(x)\right|=1\right\}\right)=\mu\left(\left\{x:\left|\chi_{E_{j}}(x)\right| \geq \epsilon\right\}\right) \text { for each } \epsilon \in(0,1] .
$$

If $\epsilon>1$, the last term in the string of equalities above is zero; hence, letting $j \rightarrow \infty$ shows that $\chi_{E_{j}} \rightarrow 0$ in measure. Now, for each $j \in \mathbb{N}$ set $f_{j}:=f \cdot \chi_{E_{j}}$. Then $f_{j} \rightarrow 0$ in measure with $\left|f_{j}\right| \leq|f| \in L^{1}(\mu)$ for each j. By the Dominated Convergence Theorem (see Problem 5 in the week 2 discussion),

$$
\lim _{j \rightarrow \infty} \int_{E_{j}} f(x) d x=0
$$

as desired.
6. We first prove the result for $f \in C_{0}(\mathbb{R})$. Since $\frac{a_{i}}{b_{i}} \neq \frac{a_{j}}{b_{j}}$ unless $i=j$, supp $f\left(b_{i} x+t a_{i}\right)$ is disjoint for $t \gg a$. To see this, let $K \subset \mathbb{R}$ be compact such that $\operatorname{supp} f \subset K$. Assume there are indices $i \neq j$ such that $b_{i} x+t a_{i}, b_{j} x+t a_{j} \in K$. Then $x+\frac{t a_{i}}{b_{i}} \in K^{\prime}$ and $x+\frac{t a_{j}}{b_{j}} \in K^{\prime}$ for some translation of K, K^{\prime}. Then

$$
t\left(\frac{a_{i}}{b_{i}}-\frac{a_{j}}{b_{j}}\right)=x+\frac{t a_{i}}{b_{i}}-\left(x+\frac{t a_{j}}{b_{j}}\right) \in K^{\prime}-K^{\prime} \text { for all } t
$$

where $K^{\prime}-K^{\prime}$ is compact. Letting $t \rightarrow \infty$ contradicts that $K^{\prime}-K^{\prime}$ is compact. It follows that for t sufficiently large the supports are disjoint so

$$
\int\left|\sum_{j=1}^{k} f\left(b_{j} x+t a_{j}\right)\right| d x=\sum_{j=1}^{k} \int\left|f\left(b_{j} x+t a_{j}\right)\right| d x
$$

Applying the change of variable $y=b_{j} x+t a_{j}$ in each integral we find

$$
\sum_{j=1}^{k} \frac{1}{\left|b_{j}\right|}\|f\|_{L^{1}(\mathbb{R})}=\lim _{t \rightarrow \infty} \int\left|\sum_{j=1}^{k} f\left(b_{j} x+t a_{j}\right)\right| d x .
$$

Let $\epsilon>0$. Suppose now that $f \in L^{1}(\mathbb{R})$ and let $\phi \in C_{0}(\mathbb{R})$ with $\|f-\phi\|_{L^{1}}<\epsilon$. Then

$$
\begin{aligned}
\left|\int\right| \sum_{j=1}^{k} f\left(b_{j} x+t a_{j}\right)\left|d x-\sum_{j=1}^{k} \frac{1}{\left|b_{j}\right|}\|f\|_{L^{1}(\mathbb{R})}\right| & \leq\left|\int\right| \sum_{j=1}^{k} f\left(b_{j} x+t a_{j}\right)\left|d x-\int\right| \sum_{j=1}^{k} \phi\left(b_{j} x+t a_{j}\right)|d x| \\
& +\left|\int\right| \sum_{j=1}^{k} \phi\left(b_{j} x+t a_{j}\right)\left|d x-\sum_{j=1}^{k} \frac{1}{\left|b_{j}\right|}\|\phi\|_{L^{1}(\mathbb{R})}\right|+\sum_{j=1}^{k} \frac{1}{\left|b_{j}\right|}\left|\|\phi\|_{L^{1}}-\|f\|_{L^{1}}\right| \\
& \leq C \epsilon+\left|\int\right| \sum_{j=1}^{k} \phi\left(b_{j} x+t a_{j}\right)\left|d x-\sum_{j=1}^{k} \frac{1}{\left|b_{j}\right|}\|\phi\|_{L^{1}(\mathbb{R})}\right|
\end{aligned}
$$

where C is a constant depending on k and the constants a_{j}, b_{j}. Letting $t \rightarrow \infty$ shows that

$$
\lim _{t \rightarrow \infty}\left|\int\right| \sum_{j=1}^{k} f\left(b_{j} x+t a_{j}\right)\left|d x-\sum_{j=1}^{k} \frac{1}{\left|b_{j}\right|}\|f\|_{L^{1}(\mathbb{R})}\right| \leq C \epsilon
$$

Since $\epsilon>0$ is arbitrary, the limit on the left-hand side above is zero, as desired.
7. Since $g \in L^{1}$, given $\epsilon>0$ and $x \in \mathbb{R}$ we may choose $r>0$ so large that

$$
\int_{|x|>r}|g(x)| d x<\epsilon
$$

A u-substitution then implies

$$
\int_{|x-y|>r}|g(x-y)| d y<\epsilon \text { for each } x \in \mathbb{R}
$$

Let $K \subset \mathbb{R}$ be a compact set and fix $x \in K$. We have:

$$
\begin{aligned}
\left|g * f_{n}(x)-g * f(x)\right| & \leq \int_{\mathbb{R}}|g(x-y)|\left|f_{n}(y)-f(y)\right| d y \\
& \leq \int_{|x-y| \leq r}|g(x-y)|\left|f_{n}(y)-f(y)\right| d y+\int_{|x-y|>r}|g(x-y)|\left|f_{n}(y)-f(y)\right| d y \\
& \leq \int_{|x-y| \leq r}|g(x-y)|\left|f_{n}(y)-f(y)\right| d y+2 \epsilon
\end{aligned}
$$

where we have used the fact that $\left|f_{n}(x)\right| \leq 1$ and $|f(x)| \leq 1$ for all x and n. Notice that $f_{n}(y) \rightarrow f(y)$ pointwise a.e. and

$$
|g(x-y)|\left|f_{n}(y)-f(y)\right| \leq 2|g(x-y)| \in L^{1}
$$

so we may apply the dominated convergence theorem to conclude that for each $x \in K$ there is an $N_{x} \in \mathbb{N}$ such that

$$
\int_{|x-y| \leq r}\left|g(x-y) \| f_{n}(y)-f(y)\right| d y<\epsilon \text { for all } n \geq N_{x}
$$

To conclude, notice that the collection of intervals $I_{x}:=\{y:|x-y| \leq r\}$ form an open cover of K; thus, we may extract a finite sub-cover $I_{x_{1}}, \ldots, I_{x_{k}}$. Taking $N:=\max \left\{N_{x_{1}}, \ldots, N_{x_{k}}\right\}$, we conclude that

$$
\left|g * f_{n}(x)-g * f(x)\right| \leq 3 \epsilon \text { for all } x \in K \text { and all } n \geq N
$$

Since $\epsilon>0$ is arbitrary, we conclude that $g * f_{n} \rightarrow g * f$ uniformly on K. Since K is an arbitrary compact set, this concludes the proof.
Remark: Notice that I did not use Egoroff's Theorem.

