Homework 2 Solutions

1. We first prove the desired limit when f(z) = Xx(q,5)(2) for some a,b € R with a < b. We have
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Hence, the result holds for characteristic functions of open intervals. Suppose now that f € L!(R) and
let {¢,}5° be a sequence of simple functions of the form
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approximating f in L'(R). Let € > 0 and choose N € N so large that ||f — ¢,||, < € for all n > N.
Fix n > N. Then
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The second term in the sum tends to zero as |§| — oo by what was proved first. Hence,
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Since € > 0 is arbitrary, the proof is complete.
Remark: This is called the Riemann-Lebesque Lemma. It is a fundamental tool in Fourier analysis,
which is a super cool subject you should totally learn if you are interested in analysis.

2. This is a consequence of the generalized dominated convergence theorem, which was proved in the
homework last quarter (see Problem 20 on pg. 59 of the text). To apply the theorem, take g, := |fy|
and g :=|f|. We can then conclude that || f,, — f||,. — 0 as n — oo by dominated convergence. Since
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for every measurable £ C R, the L' convergence of the f, to f implies the convergence is uniform in
the choice of measurable F.

3. We first consider the case when f = x(4,). The general case will be obtained by approximation with
simple functions in L'. Suppose without loss of generality that |h| > 2(b — a). Direct computation
shows
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Since (a — h,b — h) and (a,b) are disjoint, we get
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It follows that, if ¢ is a simple function of the form
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and h is chosen so that |h| is very large (depending on the a;,b;), that

/R|¢(fr +h) — ¢(x)|dx = 2/]R |p(z)| dx.

Based on the above computation, we expect

|h\—>oo/|f (x+h)— (x)|dx:2/R|f(x)|dx.

Let € > 0, let f € L'(R), and choose an L' simple function ¢ such that ||¢ — f||;. < e. We have:
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Taking the limit as |h| — oo on each side of the inequality above gives
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Since € > 0 is arbitrary, it follows that the limit on the left-hand side of the inequality above is zero.

Remark: This problem demonstrates a good qual trick. If you need to first determine what the limit
should be, try working out what the limit is when f is replaced by the characteristic function of a
bounded open interval. Often times, this computation will be easy. To generalize, use approximation

in L' by simple functions.

. Suppose that {f,}$° is a sequence of functions in L*(R) such that f,, — f pointwise a.e. on R with

|fn| < g € LY(R) for each n € N. Since g € L'(R), given € > 0 we may choose r > 0 so large that
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By Egoroft’s Theorem, there is a Lebesgue measurable subset of {|z| < r} with m(E) < ¢ and f, — f

uniformly on E° N {|z| > r}. Then
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Since g € L*(R), we can choose § so small that the second term in the sum is less than e. Hence,
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Taking the limit as n — oo on each side of the inequality above and using that f, — f uniformly on
Ecn{|z| <r} shows that
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Since € > 0 is arbitrary, we conclude that f, — f in L'(R) and, consequently, that
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. Observe that

p(E;) = p({z : [xe; ()] = 1}) = p({z : [x5,(2)| > €}) for each € € (0, 1].

If € > 1, the last term in the string of equalities above is zero; hence, letting j — oo shows that xg, — 0
in measure. Now, for each j € N set f; := f-xp,. Then f; — 0 in measure with |f;| < |f| € L' (u) for
each j. By the Dominated Convergence Theorem (see Problem 5 in the week 2 discussion),
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. We first prove the result for f € Co(R). Since ¢ # #£ unless i = j, supp f(b;z + ta;) is disjoint for
i J

t >> a. To see this, let K C R be compact such that supp f C K. Assume there are indices i # j

such that b,z +ta;, bjxr +ta; € K. Then x + tli € K" and z + tb% € K’ for some translation of K, K'.

Then
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where K’ — K' is compact. Letting ¢ — oo contradicts that K’ — K’ is compact. It follows that for ¢
sufficiently large the supports are disjoint so
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Applying the change of variable y = b;x + ta; in each integral we find
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be |f||L1(R) = tlggo/ ‘ Zf(bjertaj)’dx
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Let € > 0. Suppose now that f € L'(R) and let ¢ € Co(R) with ||f — ¢[/;. <e. Then
k k 1 k k
]/\Zf(bjﬁtaj)\dx—xWIIfIILl(m\ <| 13 f0s -+ ta)]da— [ |37 o050+ tay)|ds]
— — 1 i=1
J J Jk . Jl . 1
+] [3 ot +tay)| e - Z|b—j|||¢||L1<R>\ 30 ppllells = 10
=~ - =~
k
<C&w/w23¢bm+mij §j§4mm




where C' is a constant depending on %k and the constants a;,b;. Letting ¢ — oo shows that
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Since € > 0 is arbitrary, the limit on the left-hand side above is zero, as desired.

. Since g € L', given € > 0 and z € R we may choose r > 0 so large that

/ lg(z)|dz < e.
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A wu-substitution then implies

/ lg(x — y)| dy < € for each x € R.
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Let K C R be a compact set and fix x € K. We have:
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where we have used the fact that |f,,(z)| <1 and |f(z)| <1 for all z and n. Notice that f,,(y) — f(v)
pointwise a.e. and

lg(z — | fn(y) — f(y)] < 2|g(x —y)| € LY,

so we may apply the dominated convergence theorem to conclude that for each x € K there is an
N, € N such that

- 9(x = )|l fuly) = F(y)| dy < € for all n > N,.
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To conclude, notice that the collection of intervals I, := {y : |x — y| < r} form an open cover of K;
thus, we may extract a finite sub-cover I,,...,I,, . Taking N := max{N,,,..., N, }, we conclude
that

|g* fn(z) —g* f(z)] <3eforall z € K and all n > N.

Since € > 0 is arbitrary, we conclude that g x f, — ¢ * f uniformly on K. Since K is an arbitrary
compact set, this concludes the proof.

Remark: Notice that I did not use Egoroff’s Theorem.



