
Homework 2 Solutions

1. We first prove the desired limit when f(x) = χ(a,b)(x) for some a, b ∈ R with a < b. We have∣∣∣ ∫
R
eixξf(x) dx

∣∣∣ = ∣∣∣ ∫ b

a

eixξ dx
∣∣∣ = |eibξ − eiaξ|

ξ
≤ 2

ξ
→ 0 as |ξ| → ∞.

Hence, the result holds for characteristic functions of open intervals. Suppose now that f ∈ L1(R) and
let {ϕn}∞1 be a sequence of simple functions of the form

ϕn =

k∑
1

χ(aj
n,b

j
n)

approximating f in L1(R). Let ϵ > 0 and choose N ∈ N so large that ∥f − ϕn∥1 < ϵ for all n ≥ N .
Fix n ≥ N . Then ∣∣∣ ∫

R
eixξf(x) dx

∣∣∣ ≤ ∣∣∣ ∫
R
eixξ(f(x)− ϕn(x)) dx

∣∣∣+ ∣∣∣ ∫
R
eixξϕn dx

∣∣∣
≤ ∥f − ϕn∥1 +

∣∣∣ ∫
R
eixξϕn dx

∣∣∣
≤ ϵ+

∣∣∣ ∫
R
eixξϕn dx

∣∣∣.
The second term in the sum tends to zero as |ξ| → ∞ by what was proved first. Hence,

lim
|ξ|→0

∣∣∣ ∫
R
eixξf(x) dx

∣∣∣ ≤ ϵ.

Since ϵ > 0 is arbitrary, the proof is complete.

Remark: This is called the Riemann-Lebesgue Lemma. It is a fundamental tool in Fourier analysis,
which is a super cool subject you should totally learn if you are interested in analysis.

2. This is a consequence of the generalized dominated convergence theorem, which was proved in the
homework last quarter (see Problem 20 on pg. 59 of the text). To apply the theorem, take gn := |fn|
and g := |f |. We can then conclude that ∥fn − f∥L1 → 0 as n → ∞ by dominated convergence. Since∫

E

|fn(x)− f(x)| dx ≤ ∥fn − f∥L1

for every measurable E ⊂ R, the L1 convergence of the fn to f implies the convergence is uniform in
the choice of measurable E.

3. We first consider the case when f = χ(a,b). The general case will be obtained by approximation with
simple functions in L1. Suppose without loss of generality that |h| > 2(b − a). Direct computation
shows

|χ(a,b)(x+ h)− χ(a,b)(x)| = χ(a−h,b−h)∪(a,b)(x).

Since (a− h, b− h) and (a, b) are disjoint, we get∫
R
|χ(a,b)(x+ h)− χ(a,b)(x)| dx = 2(b− a) = 2

∫
R
|χ(a,b)(x)| dx.
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It follows that, if ϕ is a simple function of the form

ϕ =

n∑
1

χ(an,bn)

and h is chosen so that |h| is very large (depending on the aj , bj), that∫
R
|ϕ(x+ h)− ϕ(x)| dx = 2

∫
R
|ϕ(x)| dx.

Based on the above computation, we expect

lim
|h|→∞

∫
R
|f(x+ h)− f(x)| dx = 2

∫
R
|f(x)| dx.

Let ϵ > 0, let f ∈ L1(R), and choose an L1 simple function ϕ such that ∥ϕ− f∥L1 < ϵ. We have:∣∣∣ ∫
R
(|f(x+ h)− f(x)| − 2|f(x)|) dx

∣∣∣ ≤ ∣∣∣ ∫
R
(|f(x+ h)− f(x)| − |ϕ(x+ h)− ϕ(x)|) dx

∣∣∣
+

∣∣∣ ∫
R
(|ϕ(x+ h)− ϕ(x)| − 2|f(x)|) dx

∣∣∣
≤

∫
R
|f(x+ h)− ϕ(x+ h)| dx+

∫
R
|ϕ(x)− f(x)| dx+

+
∣∣∣ ∫

R
(|ϕ(x+ h)− ϕ(x)| − 2|f(x)|) dx

∣∣∣
≤ 2ϵ+

∣∣∣ ∫
R
(|ϕ(x+ h)− ϕ(x)| − 2|f(x)|) dx

∣∣∣
Taking the limit as |h| → ∞ on each side of the inequality above gives

lim
|h|→∞

∣∣∣ ∫
R
(|f(x+ h)− f(x)| − 2|f(x)|) dx

∣∣∣ ≤ 2ϵ+ 2
∣∣∣ ∫

R
(|ϕ(x)| − |f(x)|) dx

∣∣∣
≤ 2ϵ+ 2

∫
R
|ϕ(x)− f(x)| dx

≤ 4ϵ.

Since ϵ > 0 is arbitrary, it follows that the limit on the left-hand side of the inequality above is zero.

Remark: This problem demonstrates a good qual trick. If you need to first determine what the limit
should be, try working out what the limit is when f is replaced by the characteristic function of a
bounded open interval. Often times, this computation will be easy. To generalize, use approximation
in L1 by simple functions.

4. Suppose that {fn}∞1 is a sequence of functions in L1(R) such that fn → f pointwise a.e. on R with
|fn| ≤ g ∈ L1(R) for each n ∈ N. Since g ∈ L1(R), given ϵ > 0 we may choose r > 0 so large that∫

|x|>r

g(x) dx < δ.

By Egoroff’s Theorem, there is a Lebesgue measurable subset of {|x| ≤ r} with m(E) < δ and fn → f
uniformly on Ec ∩ {|x| > r}. Then∫

R
|fn(x)− f(x)| dx =

∫
|x|>r

|fn(x)− f(x)| dx+

∫
|x|≤r

|fn(x)− f(x)| dx

≤ 2

∫
|x|>r

g(x) dx+ 2

∫
E

g(x) dx+

∫
Ec∩{|x|≤r}

|fn(x)− f(x)| dx.
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Since g ∈ L1(R), we can choose δ so small that the second term in the sum is less than ϵ. Hence,∫
R
|fn(x)− f(x)| dx ≤ 3ϵ+

∫
Ec∩{|x|≤r}

|fn(x)− f(x)| dx.

Taking the limit as n → ∞ on each side of the inequality above and using that fn → f uniformly on
Ec ∩ {|x| ≤ r} shows that

lim
n→∞

∫
R
|fn(x)− f(x)| dx ≤ 3ϵ.

Since ϵ > 0 is arbitrary, we conclude that fn → f in L1(R) and, consequently, that

lim
n→∞

∫
R
fn(x) dx =

∫
R
f(x) dx.

5. Observe that

µ(Ej) = µ({x : |χEj
(x)| = 1}) = µ({x : |χEj

(x)| ≥ ϵ}) for each ϵ ∈ (0, 1].

If ϵ > 1, the last term in the string of equalities above is zero; hence, letting j → ∞ shows that χEj → 0
in measure. Now, for each j ∈ N set fj := f ·χEj

. Then fj → 0 in measure with |fj | ≤ |f | ∈ L1(µ) for
each j. By the Dominated Convergence Theorem (see Problem 5 in the week 2 discussion),

lim
j→∞

∫
Ej

f(x) dx = 0,

as desired.

6. We first prove the result for f ∈ C0(R). Since ai

bi
̸= aj

bj
unless i = j, supp f(bix + tai) is disjoint for

t >> a. To see this, let K ⊂ R be compact such that supp f ⊂ K. Assume there are indices i ̸= j
such that bix+ tai, bjx+ taj ∈ K. Then x+ tai

bi
∈ K ′ and x+

taj

bj
∈ K ′ for some translation of K, K ′.

Then

t
(ai
bi

− aj
bj

)
= x+

tai
bi

−
(
x+

taj
bj

)
∈ K ′ −K ′ for all t

where K ′ −K ′ is compact. Letting t → ∞ contradicts that K ′ −K ′ is compact. It follows that for t
sufficiently large the supports are disjoint so∫ ∣∣∣ k∑

j=1

f(bjx+ taj)
∣∣∣ dx =

k∑
j=1

∫
|f(bjx+ taj)| dx.

Applying the change of variable y = bjx+ taj in each integral we find

k∑
j=1

1

|bj |
∥f∥L1(R) = lim

t→∞

∫ ∣∣∣ k∑
j=1

f(bjx+ taj)
∣∣∣ dx.

Let ϵ > 0. Suppose now that f ∈ L1(R) and let ϕ ∈ C0(R) with ∥f − ϕ∥L1 < ϵ. Then

∣∣∣ ∫ ∣∣∣ k∑
j=1

f(bjx+ taj)
∣∣∣ dx−

k∑
j=1

1

|bj |
∥f∥L1(R)

∣∣∣ ≤ ∣∣∣ ∫ ∣∣∣ k∑
j=1

f(bjx+ taj)
∣∣∣ dx−

∫ ∣∣∣ k∑
j=1

ϕ(bjx+ taj)
∣∣∣ dx∣∣∣

+
∣∣∣ ∫ ∣∣∣ k∑

j=1

ϕ(bjx+ taj)
∣∣∣ dx−

k∑
j=1

1

|bj |
∥ϕ∥L1(R)

∣∣∣+ k∑
j=1

1

|bj |
|∥ϕ∥L1 − ∥f∥L1 |

≤ Cϵ+
∣∣∣ ∫ ∣∣∣ k∑

j=1

ϕ(bjx+ taj)
∣∣∣ dx−

k∑
j=1

1

|bj |
∥ϕ∥L1(R)

∣∣∣,
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where C is a constant depending on k and the constants aj , bj . Letting t → ∞ shows that

lim
t→∞

∣∣∣ ∫ ∣∣∣ k∑
j=1

f(bjx+ taj)
∣∣∣ dx−

k∑
j=1

1

|bj |
∥f∥L1(R)

∣∣∣ ≤ Cϵ.

Since ϵ > 0 is arbitrary, the limit on the left-hand side above is zero, as desired.

7. Since g ∈ L1, given ϵ > 0 and x ∈ R we may choose r > 0 so large that∫
|x|>r

|g(x)| dx < ϵ.

A u-substitution then implies ∫
|x−y|>r

|g(x− y)| dy < ϵ for each x ∈ R.

Let K ⊂ R be a compact set and fix x ∈ K. We have:

|g ∗ fn(x)− g ∗ f(x)| ≤
∫
R
|g(x− y)||fn(y)− f(y)| dy

≤
∫
|x−y|≤r

|g(x− y)||fn(y)− f(y)| dy +
∫
|x−y|>r

|g(x− y)||fn(y)− f(y)| dy

≤
∫
|x−y|≤r

|g(x− y)||fn(y)− f(y)| dy + 2ϵ,

where we have used the fact that |fn(x)| ≤ 1 and |f(x)| ≤ 1 for all x and n. Notice that fn(y) → f(y)
pointwise a.e. and

|g(x− y)||fn(y)− f(y)| ≤ 2|g(x− y)| ∈ L1,

so we may apply the dominated convergence theorem to conclude that for each x ∈ K there is an
Nx ∈ N such that ∫

|x−y|≤r

|g(x− y)||fn(y)− f(y)| dy < ϵ for all n ≥ Nx.

To conclude, notice that the collection of intervals Ix := {y : |x − y| ≤ r} form an open cover of K;
thus, we may extract a finite sub-cover Ix1

, . . . , Ixk
. Taking N := max{Nx1

, . . . , Nxk
}, we conclude

that
|g ∗ fn(x)− g ∗ f(x)| ≤ 3ϵ for all x ∈ K and all n ≥ N.

Since ϵ > 0 is arbitrary, we conclude that g ∗ fn → g ∗ f uniformly on K. Since K is an arbitrary
compact set, this concludes the proof.

Remark: Notice that I did not use Egoroff’s Theorem.
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