
Modes of Convergence

1 Notes

We now have several notions of convergence at our disposal. Recall that uniform convergence implies
pointwise convergence, which implies pointwise a.e. convergence. However, the implications cannot be
reversed. Another mode of convergence that is useful is convergence in measure.

Definition 1. (a) We say that a sequence {fn} of measurable real-valued functions on (X,M, µ) is Cauchy
in measure if for every ϵ > 0,

µ({x : |fn(x)− fm(x)| ≥ ϵ}) → 0 as m,n → ∞.

(b) We say that hat {fn} converges in measure to f if for every ϵ > 0

µ({x : |fn(x)− f(x)| ≥ ϵ}) → 0 as n → ∞.

It is not hard to show that if fn → f in L1, then fn → f in measure. However, the converse is false. To
see this, consider fn := n−1χ(0,n), for example.

The key theorems are as follows:

Theorem 1. If fn → f in L1, there is a subsequence {fnj
} such that fnj

→ f pointwise almost everywhere.

Theorem 1 also holds in the case fn → f in measure.

Theorem 2 (Egoroff’s Theorem). Suppose that µ(X) < ∞ and f1, f2, . . . and f are measurable real-valued
functions on X such that fn → f a.e. Then for every ϵ > 0 there exists a E ⊂ X such that µ(E) < ϵ and
fn → f uniformly on Ec.

The convergence in Theorem 2 is called almost uniform convergence. Thus, Egoroff’s Theorem says
that pointwise a.e. convergence of a sequence of measurable functions implies almost uniform convergence.
Furthermore, it is not difficult to show that almost uniform convergence implies a.e. convergence and
convergence in measure (see Problem 3).

2 Problems

1. fn → f in measure iff for every ϵ > 0 there exists N ∈ N such that µ({x : |fn(x)− f(x)| ≥ ϵ}) < ϵ for
every n ≥ N .

Solution. If fn → f in measure, then for every ϵ > 0 we find µ({x : |fn(x)−f(x)| ≥ ϵ}) → 0 as n → ∞.
In particular, given ϵ > 0 we may find N ∈ N such that n ≥ N implies µ({x : |fn(x)− f(x)| ≥ ϵ}) < ϵ.
Now, suppose that for every ϵ > 0 there is an N ∈ N such that n ≥ N implies µ({x : |fn(x)− f(x)| ≥
ϵ}) < ϵ. Note that for every δ such that 0 < δ < ϵ, there exists K ∈ N such that n ≥ K implies
µ({x : |fn(x)− f(x)| ≥ δ}) < δ < ϵ. In addition, {x : |fn(x)− f(x)| ≥ ϵ} ⊂ {x : |fn(x)− f(x)| ≥ δ} for
each n ≥ max{N,K} since δ < ϵ, so µ({x : |fn(x) − f(x)| ≥ ϵ}) < δ for each n ≥ max{N,K}. Since
ϵ > 0 is arbitrary and δ is any number satisfying 0 < δ < ϵ, we conclude µ({x : |fn(x)−f(x)| ≥ ϵ}) → 0
as n → ∞ for every ϵ > 0. That is, fn → f in measure.
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2. If µ(En) < ∞ for each n ∈ N and χEn
→ f in L1, then f is a.e. equal to the characteristic function of

a measurable set.

Solution. Since fn := χEn → f in L1 we can extract a subsequence of the fn, {fnk
}, converging to f

pointwise a.e. Choose x so that fnk
(x) → f(x). We claim that either f(x) = 1 or f(x) = 0. Indeed, if

f(x) /∈ {0, 1} then there is an ϵ > 0 such that

min{|f(x)− 1|, |f(x)|} > ϵ.

Since the range of fnk
is contained in {0, 1} for each nk, this implies |fnk

− f(x)| > ϵ for each nk

contradicting that fnk
(x) → f(x). Furthermore, f is measurable so that the set E := {f ̸= 0} is

measurable. By what was just proved, we conclude that f is a.e. equal to χE .

3. Show that if fn → f almost uniformly, then fn → f almost everywhere and in measure.

Solution. Suppose fn → f almost uniformly. Then for every ϵ > 0 there is E ⊂ X with µ(E) < ϵ and
fn → f uniformly on Ec. Choose En so that this condition is satisfied for each n ∈ N with ϵn = 1

n .
Set E =

⋃
n∈N Ec

n. Then fn → f on E pointwise and µ(Ec) = µ
(⋂

n∈N En

)
= 0. Thus, fn → f a.e.

Let δ, ϵ > 0. Choose E so that µ(E) < ϵ and fn → f uniformly on Ec. Choose n ∈ N so that n ≥ N
implies |fn − f | < δ on Ec. Then {x : |fn − f | ≥ δ} ⊂ E so

µ({x : |fn − f | ≥ δ}) < ϵ

and this holds for each n ≥ N . Since ϵ, δ > 0 are arbitrary, it follows that fn → f in measure.

4. (Fatou’s Lemma) If {fn} ⊂ L+, fn ≥ 0, and fn → f in measure, then
∫
f ≤ lim inf

∫
fn.

Solution. Suppose fn → f in measure. Let δ, ϵ > 0 and choose N ∈ N so that n ≥ N implies

µ({x : |fn − f | ≥ δ

2
}) < ϵ.

Observe that if m > n ≥ N , we have

|fn − fm| ≤ |fn − f |+ |f − fm|.

Then, if |fn(x)− fm(x)| ≥ δ, either

|fn(x)− f(x)| ≥ δ

2
or |fm(x)− f(x)| ≥ δ

2
.

In either case, we find

µ({x : |fn(x)− fm(x)| ≥ δ}) < ϵ for all m > n ≥ N

so {fn} is Cauchy in measure. Furthermore, there exists a subsequence {fnk
}k∈N such that

lim
k→∞

∫
fnk

= lim inf
n→∞

∫
fn.

It is clear that fnk
→ f in measure also. Thus, By Theorem 2.30, there exists a subsequence {fnkj

}
such that fnkj

→ f as j → ∞ a.e. Applying Fatou’s lemma, we find∫
f ≤ lim

j→∞

∫
fnkj

= lim
k→∞

∫
fnk

= lim inf
n→∞

∫
fn,

as desired.

5. (Dominated Convergence Theorem) Suppose |fn| ≤ g ∈ L1 and fn → f in measure.
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(a)
∫
f = lim

∫
fn.

(b) fn → f in L1.

Solution. Since fn → f in measure, {fn} is Cauchy in measure so by Theorem 2.30 there is a sub-
sequence {fnk

}k∈N such that fnk
→ f a.e. Since |fnk

| ≤ g for each k, |f | ≤ g a.e. so f ∈ L1 also.
Since

|fn − f | = |fn + g − (f + g)| = |(g − fn)− (g − f)| for each n ∈ N,

it is clear that if fn → f in measure, both fn + g → f + g in measure and g − fn → g − f in measure.
Since g + fn ≥ 0 a.e. and g − fn ≥ 0 a.e., we may apply Problem 2 to find∫

g +

∫
f ≤ lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn,∫

g −
∫

f ≤ lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn.

Thus, lim inf
∫
fn ≥

∫
f ≥ lim sup

∫
fn so

∫
f = lim

∫
fn. To see that fn → f in L1 also, simply note

that if fn → f in measure, then |fn − f | → 0 in measure. Furthermore, it holds that |fn − f | ≤ 2|g|
a.e. By what was just proved, |fn − f | → 0 in L1 which holds iff fn → f in L1.

3


	Notes
	Problems

