Integration on \mathbb{R}^{n}

Here, we briefly discuss the main theorems concerning integration on \mathbb{R}^{n}. Specifically, we will cover the Fubini Theorem and change of variable formula. We will focus on the the case where $(X, \mathcal{M}, \mu)=\left(\mathbb{R}^{n}, \mathcal{L}, m\right)$ for simplicity.

We begin by writing \mathbb{R}^{n} as a product $\mathbb{R}^{n}=\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$ where $n=n_{1}+n_{2}$ and $n_{1}, n_{2} \geq 1$. We can then write a point in \mathbb{R}^{n} as (x, y) for $x \in \mathbb{R}^{n_{1}}$ and $y \in \mathbb{R}^{n_{2}}$. With such a decomposition in mind, the notion of a slice becomes natural.

If $E \subset \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$, we define the x and y slices of E by

$$
E_{x}:=\left\{y \in \mathbb{R}^{n_{2}}:(x, y) \in E\right\} \text { and } E^{y}:=\left\{x \in \mathbb{R}^{n_{1}}:(x, y) \in E\right\} .
$$

If $f: \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}$, we can define the slice of f corresponding to $y \in \mathbb{R}^{n_{2}}$ to be the function $f^{y}(x):=f(x, y)$ (here, y is fixed). One issue that arises in the proof of the Fubini Theorem is that, even if f is measurable on \mathbb{R}^{n}, it is not necessarily true that the slice f^{y} is measurable on $\mathbb{R}^{n_{1}}$ for each y; nor does the corresponding assertion necessarily hold for a measurable set E. To see this, let V be the Vitali non-measurable set in \mathbb{R} and consider $E:=V \times\{0\}$. Then E has measure zero in \mathbb{R}^{2} so that E is measurable. However, the slices E^{y} are not all measurable since E^{0} is V. Fortunately, measurability holds for almost all slices. We can state the Fubini Theorem precisely as follows:

Theorem 1 (Fubini Theorem). Suppose $f(x, y)$ is integrable on $\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}$. Then for almost every $x \in \mathbb{R}^{n_{2}}$:
(i) The slice f^{y} is integrable on $\mathbb{R}^{n_{1}}$.
(ii) The function defined by

$$
\int_{\mathbb{R}^{n_{1}}} f^{y}(x) d x
$$

is integrable on $\mathbb{R}^{n_{2}}$ and

$$
\int_{\mathbb{R}^{n_{2}}}\left(\int_{\mathbb{R}^{n_{2}}} f(x, y) d x\right) d y=\int_{\mathbb{R}^{n}} f .
$$

The theorem is symmetric in x and y. Furthermore, the theorem states that the integral of f on \mathbb{R}^{n} can be computed by iterating lower-dimensional integrals, and that the integrals can be taken in any order, coinciding with the corresponding theorem from multivariable calculus. Since any complex-valued function is of the form $f=g+i h$ where g and h are real-valued, the result extends to complex-valued functions also by applying Theorem 1 to the real and imaginary parts of f. When $f \geq 0$, the assumption of integrability of f can be replaced with mmeasurability of f. This is often referred to as Tonelli's Theorem. As an immediate consequence of the Fubini Theorem, we can prove the measure theoretic equivalent to a classic theorem in calculus: If $f:[a, b] \rightarrow \mathbb{R}$ is integrable and non-negative, then $\int_{a}^{b} f(x) d x$ is equal to the area under the graph of f.

Corollary 1. Suppose $f(x) \geq 0$ is a real-valued function on \mathbb{R}^{n} and let

$$
\mathcal{A}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}: 0 \leq y \leq f(x)\right\} .
$$

Then:
(i) f is measurable on \mathbb{R}^{n} if and only if \mathcal{A} is measurable in \mathbb{R}^{n+1}.
(ii) If the condition (i) holds, then

$$
\int_{\mathbb{R}^{n}} f(x)=m(\mathcal{A})
$$

Remark 1. It is a good exercise to prove Corollary 1.
More generally, the Fubini Theorem holds for complete. σ-finite measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν). For the general Tonelli Theorem, only the assumption of σ-finiteness is necessary. However, in practice the Fubini Theorem is typically applied on \mathbb{R}^{n} with the Lebesgue measure. For more information, see section 2.5 in Folland.

We now turn our attention to the change of variable formula. Let $G=\left(g_{1}, \ldots, g_{n}\right): \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a vector-valued function with C^{1} component functions g_{i}. Let $D G$ be the total derivative of G (i.e. the matrix $\left.\left(\frac{\partial g_{i}}{\partial x_{j}}\right)_{i, j=1, \ldots, n}\right)$. We call G a C^{1} diffeomorphism if G is injective and $D G$ is invertible for all $x \in \Omega$. By the Inverse Function Theorem, the inverse map $G^{-1}: G(\Omega) \rightarrow \Omega$ is also a C^{1} diffeomorphism and $D\left(G^{-1}\right)(x)=(D G)^{-1}\left(G^{-1}(x)\right)$ for all $x \in G(\Omega)$.

Theorem 2 (Change of Variable Formula). Suppose that $\Omega \subset \mathbb{R}^{n}$ is open and $G: \Omega \rightarrow \mathbb{R}^{n}$ is a C^{1} diffeomorphism.
(i) If f is a Lebesgue measurable function on $G(\Omega)$, then $f \circ G$ is Lebesgue measurable on Ω. Moreover, if $f \geq 0$ or $f \in L^{1}(G(\Omega))$, then

$$
\int_{G(\Omega)} f(x) d x=\int_{\Omega} f \circ G(x)|\operatorname{det} D G(x)| d x
$$

(ii) If $E \subset \Omega$ and $E \in \mathcal{L}$, then $G(E) \in \mathcal{L}$ and $m(G(E))=\int_{E}|\operatorname{det} D G(x)| d x$.

Statement (ii) is the most important for intuition. By examining (ii), we see that the change of variable formula quantifies how a C^{1} deformation of a measurable set E changes its volume. Notice that, as a direct consequence, the change of variable formula allows us to conclude that the Lebesgue measure is invariant under translation and rotation. To see this, note that if G is a translation map, then $D G=I_{n \times n}$ so its determinant is identically one. If G is a rotation map, then $D G$ is an orthogonal matrix with determinant one. In either case, (ii) shows that $m(G(E))=m(E)$.

References: Real Analysis: Measure Theory, Integration, and Hilbert Spaces by Elias M. Stein and Rami Shakarchi and Real Analysis: Modern Techniques and Their Applications, 2nd ed., Gerald B. Folland.

