
Integration on Rn

Here, we briefly discuss the main theorems concerning integration on Rn. Specifically, we will cover the
Fubini Theorem and change of variable formula. We will focus on the the case where (X,M, µ) = (Rn,L,m)
for simplicity.

We begin by writing Rn as a product Rn = Rn1 × Rn2 where n = n1 + n2 and n1, n2 ≥ 1. We can then
write a point in Rn as (x, y) for x ∈ Rn1 and y ∈ Rn2 . With such a decomposition in mind, the notion of a
slice becomes natural.

If E ⊂ Rn1 × Rn2 , we define the x and y slices of E by

Ex := {y ∈ Rn2 : (x, y) ∈ E} and Ey := {x ∈ Rn1 : (x, y) ∈ E}.

If f : Rn1×Rn2 → R, we can define the slice of f corresponding to y ∈ Rn2 to be the function fy(x) := f(x, y)
(here, y is fixed). One issue that arises in the proof of the Fubini Theorem is that, even if f is measurable on
Rn, it is not necessarily true that the slice fy is measurable on Rn1 for each y; nor does the corresponding
assertion necessarily hold for a measurable set E. To see this, let V be the Vitali non-measurable set in R
and consider E := V × {0}. Then E has measure zero in R2 so that E is measurable. However, the slices
Ey are not all measurable since E0 is V . Fortunately, measurability holds for almost all slices. We can state
the Fubini Theorem precisely as follows:

Theorem 1 (Fubini Theorem). Suppose f(x, y) is integrable on Rn1 ×Rn2 . Then for almost every x ∈ Rn2 :

(i) The slice fy is integrable on Rn1 .

(ii) The function defined by ∫
Rn1

fy(x) dx

is integrable on Rn2 and ∫
Rn2

(∫
Rn2

f(x, y) dx
)
dy =

∫
Rn

f.

The theorem is symmetric in x and y. Furthermore, the theorem states that the integral of f on Rn

can be computed by iterating lower-dimensional integrals, and that the integrals can be taken in any order,
coinciding with the corresponding theorem from multivariable calculus. Since any complex-valued function
is of the form f = g + ih where g and h are real-valued, the result extends to complex-valued functions also
by applying Theorem 1 to the real and imaginary parts of f . When f ≥ 0, the assumption of integrability of
f can be replaced with mmeasurability of f . This is often referred to as Tonelli’s Theorem. As an immediate
consequence of the Fubini Theorem, we can prove the measure theoretic equivalent to a classic theorem in

calculus: If f : [a, b] → R is integrable and non-negative, then
∫ b

a
f(x) dx is equal to the area under the graph

of f .

Corollary 1. Suppose f(x) ≥ 0 is a real-valued function on Rn and let

A := {(x, y) ∈ Rn × R : 0 ≤ y ≤ f(x)}.

Then:

(i) f is measurable on Rn if and only if A is measurable in Rn+1.
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(ii) If the condition (i) holds, then ∫
Rn

f(x) = m(A).

Remark 1. It is a good exercise to prove Corollary 1.

More generally, the Fubini Theorem holds for complete. σ-finite measure spaces (X,M, µ) and (Y,N , ν).
For the general Tonelli Theorem, only the assumption of σ-finiteness is necessary. However, in practice the
Fubini Theorem is typically applied on Rn with the Lebesgue measure. For more information, see section
2.5 in Folland.

We now turn our attention to the change of variable formula. Let G = (g1, . . . , gn) : Ω ⊂ Rn → Rn

be a vector-valued function with C1 component functions gi. Let DG be the total derivative of G (i.e.
the matrix ( ∂gi

∂xj
)i,j=1,...,n). We call G a C1 diffeomorphism if G is injective and DG is invertible for all

x ∈ Ω. By the Inverse Function Theorem, the inverse map G−1 : G(Ω) → Ω is also a C1 diffeomorphism
and D(G−1)(x) = (DG)−1(G−1(x)) for all x ∈ G(Ω).

Theorem 2 (Change of Variable Formula). Suppose that Ω ⊂ Rn is open and G : Ω → Rn is a C1

diffeomorphism.

(i) If f is a Lebesgue measurable function on G(Ω), then f ◦ G is Lebesgue measurable on Ω. Moreover,
if f ≥ 0 or f ∈ L1(G(Ω)), then∫

G(Ω)

f(x) dx =

∫
Ω

f ◦G(x)|detDG(x)| dx.

(ii) If E ⊂ Ω and E ∈ L, then G(E) ∈ L and m(G(E)) =
∫
E
|detDG(x)| dx.

Statement (ii) is the most important for intuition. By examining (ii), we see that the change of variable
formula quantifies how a C1 deformation of a measurable set E changes its volume. Notice that, as a direct
consequence, the change of variable formula allows us to conclude that the Lebesgue measure is invariant
under translation and rotation. To see this, note that if G is a translation map, then DG = In×n so its
determinant is identically one. If G is a rotation map, then DG is an orthogonal matrix with determinant
one. In either case, (ii) shows that m(G(E)) = m(E).

References: Real Analysis: Measure Theory, Integration, and Hilbert Spaces by Elias M. Stein and
Rami Shakarchi and Real Analysis: Modern Techniques and Their Applications, 2nd ed., Gerald B. Folland.

2

https://en.wikipedia.org/wiki/Inverse_function_theorem

