Homework 3 Solutions

1. Set

$$
A^{+}:=\{f \geq 0\} \text { and } A^{-}:=\{f<0\}
$$

Then A^{+}and A^{-}are in \mathcal{A} and

$$
\int_{A^{+}} f d \mu=\int_{A^{-}} f d \mu=0 .
$$

By assumption, both integrals on the right-hand side are zero. Since f does not change sign on A^{+} nor on $A^{-}, f=0$ a.e. on each of these sets. Since $X=A^{+} \cup A^{-}$, it follows that $f=0$ a.e. on X.
2. We first prove the result for $f \in C_{0}(\mathbb{R})$. Since f has compact support, we know that supp $f \subset[a, b]$ for some $-\infty<a<b<\infty$. Furthermore, by u-substitution we have

$$
\int_{-T}^{T} f(s+t) d t=\int_{s-T}^{s+T} f(t) d t
$$

The integral above is zero if $s>b+T$ or $s<a-T$. Hence, for T fixed we find

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{2 T}\left|\int_{-T}^{T} f(s+t) d t\right| d s & =\frac{1}{2 T} \int_{a-T}^{b+T}\left|\int_{s-T}^{s+T} f(t) d t\right| d s \\
& =\frac{1}{2 T}\left(\int_{a-T}^{a-T+\sqrt{T}}+\int_{a-T+\sqrt{T}}^{b+T-\sqrt{T}}+\int_{b+T-\sqrt{T}}^{b+T}\right)\left|\int_{s-T}^{s+T} f(t) d t\right| d s
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\frac{1}{2 T}\left(\int_{a-T}^{a-T+\sqrt{T}}+\int_{b+T-\sqrt{T}}^{b+T}\right)\left|\int_{s-T}^{s+T} f(t) d t\right| d s & \leq \frac{1}{2 T}\|f\|_{L^{1}}\left(\int_{a-T}^{a-T+\sqrt{T}} d t+\int_{b+T-\sqrt{T}}^{b+T} d t\right) \\
& =\frac{\|f\|_{L^{1}}}{\sqrt{T}} \rightarrow 0 \text { as } T \rightarrow \infty
\end{aligned}
$$

Hence, we only need to focus on the middle integral in the sum. For $s \in(a-T+\sqrt{T}, b+T-\sqrt{T})$, we have $s+T \geq a+\sqrt{T}>b$ for T large and $s-T \leq b-\sqrt{T}<a$ for T large. Thus, for large T

$$
\int_{s-T}^{s+T} f(t) d t=\int_{-\infty}^{\infty} f(t) d t
$$

Then for large T

$$
\begin{aligned}
\frac{!}{2 T} \int_{a-T+\sqrt{T}}^{b+T-\sqrt{T}}\left|\int_{s-T}^{s+T} f(t) d t\right| d s=\left|\int_{-\infty}^{\infty} f(t) d t\right| & =\left|\int_{-\infty}^{\infty} f(t) d t\right| \cdot\left(1+\frac{b-a}{2}-\frac{1}{\sqrt{T}}\right) \\
& \rightarrow\left|\int_{-\infty}^{\infty} f(t) d t\right| \text { as } T \rightarrow \infty
\end{aligned}
$$

This proves the result when $f \in C_{0}(\mathbb{R})$.
Suppose now that $f \in L^{1}(\mathbb{R})$ and let $\left\{\phi_{n}\right\}_{1}^{\infty} \subset C_{0}(\mathbb{R})$ such that $\phi_{n} \rightarrow f$ in L^{1}. Suppose further that $\left|\phi_{n}(t)\right| \leq|f(t)|$ for all t. For each n, T set

$$
g_{n}(s, T):=\frac{1}{2 T}\left|\int_{-T}^{T} \phi_{n}(s+t) d t\right| \text { and } g(s, T):=\frac{1}{2 T}\left|\int_{-T}^{T} f(s+t) d t\right|
$$

The assumption that $\phi_{n} \rightarrow f$ in L^{1} implies $g_{n}(s, T) \rightarrow g(s, T)$ pointwise for each s, T fixed. Furthermore,

$$
\left|g_{n}(s, T)\right| \leq \frac{1}{2 T} \int_{-T}^{T}\left|\phi_{n}(s+t)\right| d t \leq \frac{1}{2 T} \int_{-T}^{T}|f(s+t)| d t \in L^{1}(\mathbb{R} ; d s)
$$

We may therefore apply the dominated convergence theorem to conclude that

$$
\int_{-\infty}^{\infty}\left|g_{n}(s, T)-g(s, T)\right| d s \rightarrow 0 \text { as } n \rightarrow \infty
$$

for each fixed T. Now,

$$
\begin{aligned}
\left|\int_{-\infty}^{\infty} \frac{1}{2 T}\right| \int_{-T}^{T} f(s+t) d t\left|d s-\left|\int_{-\infty}^{\infty} f(t) d t\right|\right| & \leq \int_{-\infty}^{\infty}\left|g(s, T)-g_{n}(s, T)\right| d s \\
& +\left|g_{n}(s, T)-\left|\int_{-\infty}^{\infty} \phi_{n}(t) d t\right|\right| \\
& +\int_{-\infty}^{\infty}\left|\phi_{n}(t)-f(t)\right| d t
\end{aligned}
$$

Let $\epsilon>0$ be given. Choosing n large, the first and last terms in the sum on the right-hand side above can be made $<\epsilon$. Similarly, by choosing T large, the middle term can be made $<\epsilon$. It follows that, for large T, the quantity on the left-hand side of the inequality above is less than 3ϵ. Since $\epsilon>0$ is arbitrary, the proof is complete.
3. This is just Theorem 2.30 on page 61 in Folland.
4. Proof 1: Since $f_{n} \rightarrow f$ in measure, $\left\{f_{n}\right\}$ is Cauchy in measure so by Theorem 2.30 there is a subsequence $\left\{f_{n_{k}}\right\}_{k \in \mathbb{N}}$ such that $f_{n_{k}} \rightarrow f$ a.e. Since $\left|f_{n_{k}}\right| \leq g$ for each $k,|f| \leq g$ a.e. so $f \in L^{1}$ also. Since

$$
\left|f_{n}-f\right|=\left|f_{n}+g-(f+g)\right|=\left|\left(g-f_{n}\right)-(g-f)\right| \text { for each } n \in \mathbb{N}
$$

it is clear that if $f_{n} \rightarrow f$ in measure, both $f_{n}+g \rightarrow f+g$ in measure and $g-f_{n} \rightarrow g-f$ in measure. Since $g+f_{n} \geq 0$ a.e. and $g-f_{n} \geq 0$ a.e., we may apply Problem 4 on the week 2 discussion worksheet to find

$$
\begin{aligned}
& \int g+\int f \leq \liminf \int\left(g+f_{n}\right)=\int g+\liminf \int f_{n} \\
& \int g-\int f \leq \liminf \int\left(g-f_{n}\right)=\int g-\limsup \int f_{n}
\end{aligned}
$$

Thus, $\liminf \int f_{n} \geq \int f \geq \limsup \int f_{n}$ so $\int f=\lim \int f_{n}$. To see that $f_{n} \rightarrow f$ in L^{1} also, simply note that if $f_{n} \rightarrow f$ in measure, then $\left|f_{n}-f\right| \rightarrow 0$ in measure. Furthermore, it holds that $\left|f_{n}-f\right| \leq 2|g|$ a.e. By what was just proved, $\left|f_{n}-f\right| \rightarrow 0$ in L^{1} which holds iff $f_{n} \rightarrow f$ in L^{1}.

Remark: Notice that I did not use σ-finiteness.
Quick Proof: Since $f_{n} \rightarrow f$ in measure, any subsequence of $\left\{f_{n}\right\}$ converges to f in measure also. Let $\left\{f_{n_{k}}\right\}$ be any subsequence of $\left\{f_{n}\right\}$. Since $f_{n_{k}} \rightarrow f$ in measure, we can extract a further subsequence $\left\{f_{n_{k_{j}}}\right\}$ that converges to f pointwise a.e. By assumption, $\left|f_{n_{k_{j}}}(x)\right| \leq g(x)$ for a.e. x and each $n_{k_{j}}$. Hence, $f_{n_{k_{j}}} \rightarrow f$ in L^{1} by the dominated convergence theorem. In particular, every subsequence of $\left\{f_{n}\right\}$ has a subsequence converging to f in L^{1}. Since L^{1} is a metric space, $f_{n} \rightarrow f$ in L^{1} also.
5. Clearly, $d(f, g) \geq 0$ and $d(f, g)=d(g, f)$. Furthermore,

$$
d(f, g)=\int \frac{|f-g|}{1+|f-g|} d \mu \leq \int_{X} d \mu=\mu(X)<\infty
$$

so d is well-defined. Since the integrand is nonnegative, $d(f, g)=0$ iff $|f-g|=0$ a.e., which holds iff $f=g$ a.e. Set $h(t)=\frac{t}{1+t}$ where $t \in[0, \infty)$. Then

$$
h^{\prime}(t)=\frac{1}{(1+t)^{2}} \geq 0
$$

for all $t \geq 0$. Thus, h is non-decreasing. Since $|f-g| \leq|f-\tilde{g}|+|\tilde{g}-g|$,

$$
d(f, g) \leq \int\left(\frac{|f-\tilde{g}|}{1+|f-\tilde{g}|}+\frac{|\tilde{g}-g|}{1+|\tilde{g}-g|}\right) d \mu=\int \frac{|f-\tilde{g}|}{1+|f-\tilde{g}|} d \mu+\int \frac{|\tilde{g}-g|}{1+|\tilde{g}-g|} d \mu=d(f, \tilde{g})+d(\tilde{g}, f)
$$

for any measurable complex-valued function \tilde{g}. We conclude that d is a metric on the space of measurable function.
Suppose $f_{n} \rightarrow f$ with respect to d and define $h_{n}:=\frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}$. Since $\rho\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty, h_{n} \rightarrow 0$ in L^{1}, hence, in measure by Proposition 2.29. Notice that, if $0<\epsilon<1$, then $h(t) \geq \epsilon$ if and only if $t \geq \epsilon(1-\epsilon)^{-1}$. Hence,

$$
\left\{x: \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} \geq \epsilon\right\}=\left\{x:\left|f_{n}-f\right| \geq \frac{\epsilon}{1-\epsilon}\right\}
$$

In addition, the function $t \mapsto t(1-t)^{-1}$ is surjective as map $(0,1) \rightarrow(0, \infty)$. The preceding observations show that the convergence of $\frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}$ to zero in measure implies the convergence of f_{n} to f in measure. Suppose now that $f_{n} \rightarrow f$ in measure. Let $\epsilon>0$ be given. Then

$$
\begin{aligned}
\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu & =\int_{\left\{x:\left|f_{n}-f\right| \geq \epsilon\right\}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\int_{\left\{x:\left|f_{n}-f\right|<\epsilon\right\}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \\
& \leq \int_{\left\{x:\left|f_{n}-f\right| \geq \epsilon\right\}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\epsilon \mu(X) \\
& \leq \mu\left(\left\{x:\left|f_{n}-f\right| \geq \epsilon\right\}\right)+\epsilon \mu(x) \\
& \rightarrow \epsilon \mu(X) \text { as } n \rightarrow \infty
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, $d\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$ so $f_{n} \rightarrow f$ with respect to d.
6. We first prove the result when $f \in C_{0}(\mathbb{R})$. Set

$$
m_{k, n}:=\min _{x \in\left[\frac{k}{n}, \frac{k+1}{n}\right]} f(x) \text { and } M_{k, n}:=\max _{x \in\left[\frac{k}{n}, \frac{k+1}{n}\right]} f(x) .
$$

Then

$$
m_{k, n} \leq n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) d x \leq M_{k, n}
$$

Since f is continuous, we may apply the mean value theorem for integrals to find $x_{k} \in\left[\frac{k}{n}, \frac{k+1}{n}\right]$ such that

$$
f\left(x_{k}\right)=n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) d x
$$

Thus,

$$
\lim _{n \rightarrow \infty} \sum_{k=-n^{2}}^{n^{2}}\left|\int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) d x\right|=\lim _{n \rightarrow \infty} \sum_{k=-n^{2}}^{n^{2}} \frac{1}{n}\left|f\left(x_{k}\right)\right|
$$

For each fixed n, let $I_{n}:=\left[n, n+\frac{1}{n}\right]$. Choosing n large, we can be sure that supp $f \subset I_{n}$. Hence, for large n the sum on the right-hand side above is simply the Riemann sum of $|f(x)|$ with intervals of length $\frac{1}{n}$ with a point x_{k} in each interval. By calculus,

$$
\lim _{n \rightarrow \infty} \sum_{k=-n^{2}}^{n^{2}} \frac{1}{n}\left|f\left(x_{k}\right)\right|=\int_{\mathbb{R}}|f(x)| d x
$$

Suppose now that $f \in L^{1}(\mathbb{R})$ and choose $g \in C_{0}(\mathbb{R})$ with $\|f-g\|_{L^{1}}<\epsilon$ for $\epsilon>0$ given. We have:

$$
\begin{aligned}
\left|\sum_{k=-n^{2}}^{n^{2}}\right| \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) d x\left|-\|f\|_{L^{1}}\right| & \left.\leq\left|\sum_{k=-n^{2}}^{n^{2}}\right| \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) d x\left|-\left|\sum_{k=-n^{2}}^{n^{2}}\right| \int_{\frac{k}{n}}^{\frac{k+1}{n}} g(x) d x\right| \right\rvert\, \\
& +\left|\sum_{k=-n^{2}}^{n^{2}}\right| \int_{\frac{k}{n}}^{\frac{k+1}{n}} g(x) d x\left|-\|g\|_{L^{1}}\right|+\left|\|g\|_{L^{1}}-\|f\|_{L^{1}}\right| \\
& \leq \sum_{k=-n^{2}}^{n^{2}} \int_{\frac{k}{n}}^{\frac{k+1}{n}}|f(x)-g(x)| d x+\left|\sum_{k=-n^{2}}^{n^{2}}\right| \int_{\frac{k}{n}}^{\frac{k+1}{n}} g(x) d x\left|-\|g\|_{L^{1}}\right|+\epsilon \\
& \leq \int_{-n^{2}}^{n^{2}}|f(x)-g(x)|+\left|\sum_{k=-n^{2}}^{n^{2}}\right| \int_{\frac{k}{n}}^{\frac{k+1}{n}} g(x) d x\left|-\|g\|_{L^{1}}\right|+\epsilon \\
& \leq\left|\sum_{k=-n^{2}}^{n^{2}}\right| \int_{\frac{k}{n}}^{\frac{k+1}{n}} g(x) d x\left|-\|g\|_{L^{1}}\right|+2 \epsilon
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using the first part, we conclude

$$
\lim _{n \rightarrow \infty}\left|\sum_{k=-n^{2}}^{n^{2}}\right| \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) d x\left|-\|f\|_{L^{1}}\right| \leq 2 \epsilon
$$

Since $\epsilon>0$ is arbitrary, we are done.
7. Fix $t \in \mathbb{R}$ and notice that

$$
h(t, x)=\frac{|f(x-t)-f(x)|}{1+g(x)^{t}} \leq|f(x-t)|+|f(x)| \in L^{1}(\mathbb{R})
$$

Hence, $x \mapsto h(t, x) \in L^{1}(\mathbb{R})$. We first prove the claim for $f \in C_{0}(\mathbb{R})$. In this case, $h(t, \mathbb{R}) \in C_{0}\left(\mathbb{R}^{2}\right)$ so if $t_{n} \rightarrow t_{0}$ we have $h\left(t_{n}, x\right) \rightarrow h\left(t_{0}, x\right)$ for each fixed $x \in \mathbb{R}$. Since $f \in C_{0}(\mathbb{R})$, there is a constant $M>0$ such that $|f(x)| \leq M$ for each x. Since $t_{n} \rightarrow t_{0}$ the sequence $\left\{t_{n}\right\}$ is bounded. Hence, there is a compact set \tilde{K} containing $K \pm t_{n}$ for each $n \in \mathbb{N} \cup\{0\}$. Set $s(x):=M \chi_{\tilde{K}}$. Then $s \in L^{1}(\mathbb{R})$ and

$$
\left|f\left(x-t_{n}\right)\right|+|f(x)| \leq 2 s(x) \text { for each } n
$$

so we may apply the dominated convergence theorem to conclude $H\left(t_{n}\right) \rightarrow H\left(t_{0}\right)$. It follows that H is continuous when $f \in C_{0}(\mathbb{R})$.
Suppose now that $f \in L^{1}(\mathbb{R})$ and let $\left\{\phi_{n}\right\}_{1}^{\infty} \subset C_{0}(\mathbb{R})$ be a sequence converging to f in $L^{1}(\mathbb{R})$. Using the reverse triangle inequality followed by the triangle inequality, we find

$$
\int_{\mathbb{R}}\left|\frac{|f(x-t)-f(x)|}{1+g(x)^{t}}-\frac{\left|\phi_{n}(x-t)-\phi_{n}(x)\right|}{1+g(x)^{t}}\right| d x \leq \int_{\mathbb{R}}\left(\left|f(x-t)-\phi_{n}(x-t)\right|+\left|\phi_{n}(x)-f(x)\right|\right) d x
$$

Since the right-hand side tends to zero as $n \rightarrow \infty$, we see that

$$
\frac{\left|\phi_{n}(x-t)-\phi_{n}(x)\right|}{1+g(x)^{t}} \rightarrow \frac{|f(x-t)-f(x)|}{1+g(x)^{t}} \text { in } L^{1}(\mathbb{R})
$$

Fix $t_{0} \in \mathbb{R}$ and suppose $t_{k} \rightarrow t_{0}$ as $k \rightarrow \infty$. Then

$$
\begin{aligned}
\left|H\left(t_{k}\right)-H\left(t_{0}\right)\right| & \leq \int_{\mathbb{R}}\left|\frac{\left|f\left(x-t_{k}\right)-f(x)\right|}{1+g(x)^{t_{k}}}-\frac{\left|f\left(x-t_{0}\right)-f(x)\right|}{1+g(x)^{t_{0}}}\right| d x \\
& \leq \int_{\mathbb{R}}\left|\frac{\left|f\left(x-t_{k}\right)-f(x)\right|}{1+g(x)^{t_{k}}}-\frac{\left|\phi_{n}\left(x-t_{k}\right)-\phi_{n}(x)\right|}{1+g(x)^{t_{k}}}\right| d x \\
& +\int_{\mathbb{R}}\left|\frac{\left|\phi_{n}\left(x-t_{k}\right)-\phi_{n}(x)\right|}{1+g(x)^{t_{k}}}-\frac{\left|\phi_{n}\left(x-t_{0}\right)-\phi_{n}(x)\right|}{1+g(x)^{t_{0}}}\right| d x \\
& +\int_{\mathbb{R}}\left|\frac{\left|\phi_{n}\left(x-t_{0}\right)-\phi_{n}(x)\right|}{1+g(x)^{t_{0}}}-\frac{\left|f\left(x-t_{0}\right)-f(x)\right|}{1+g(x)^{t_{0}}}\right| d x .
\end{aligned}
$$

Let $\epsilon>0$. By choosing n large, the first and last term in the sum on the right-hand side can be made less than ϵ. Hence, for n large,

$$
\left|H\left(t_{k}\right)-H\left(t_{0}\right)\right| \leq 2 \epsilon+\int_{\mathbb{R}}\left|\frac{\left|\phi_{n}\left(x-t_{k}\right)-\phi_{n}(x)\right|}{1+g(x)^{t_{k}}}-\frac{\left|\phi_{n}\left(x-t_{0}\right)-\phi_{n}(x)\right|}{1+g(x)^{t_{0}}}\right| d x
$$

Letting $k \rightarrow \infty$ in the inequality above and using what was proved first for $C_{0}(\mathbb{R})$ functions, we conclude that

$$
\lim _{k \rightarrow \infty}\left|H\left(t_{k}\right)-H\left(t_{0}\right)\right| \leq 2 \epsilon
$$

Since $\epsilon>0$ is arbitrary, the limit is zero. Moreover, this holds for any $t_{0} \in \mathbb{R}$ so H is continuous.

