Homework 3 Solutions

1. Set
At = {f >0} and A~ := {f < 0}.

Then AT and A~ are in A and
fin=[ fdu=o
+ A-

By assumption, both integrals on the right-hand side are zero. Since f does not change sign on A™
nor on A=, f =0 a.e. on each of these sets. Since X = AT U A~, it follows that f = 0 a.e. on X.

2. We first prove the result for f € Cy(R). Since f has compact support, we know that supp f C [a, b] for
some —oo < a < b < co. Furthermore, by u-substitution we have

T s+T
/_Tf(s+t) it = /S_T F(t) dt.

The integral above is zero if s > b+ T or s < a —T. Hence, for T fixed we find
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Hence, we only need to focus on the middle integral in the sum. For s € (a — T + VT,b+T — ﬁ),
we have s + T > a4+ T > b for T large and s — T < b — /T < a for T large. Thus, for large T

s+T o)
/ flt)dt :/ flt)dt
s=T —00
Then for large T

biwf’/ soalas=| [~ ow| =] [~ o (14250~ )

—>‘/_Oo f(t)dt‘ as T — oo.

This proves the result when f € Cy(R).

Suppose now that f € L'(R) and let {¢,}3° C Co(R) such that ¢, — f in L'. Suppose further that
| (8)] < |f(¢)| for all t. For each n,T set

I 1y [
gn(s,T) ::ﬁ’[T¢,L(s+t)dt and g(s,T) ::ﬁ‘[Tf(s+t)dt.



The assumption that ¢, — f in L' implies g, (s,T) — g(s,T) pointwise for each s, T fixed. Further-
more,

1 (T 1 (T
lgn(s.T)| < ﬁ/T|¢n<s+t>|dts ﬁ/_T|f<s+t>|dteLl<R;ds>.

We may therefore apply the dominated convergence theorem to conclude that

/ |gn(s,T) —g(s,T)|ds — 0 as n — oo

— 00

for each fixed T. Now,

’/_O;QT‘/_if(Sth)dt‘ds—\/_Zf(t)dtH S/_o:o|g(s7T)—gn(37T)|d3

+Jgnts,7) | /Z out) di

+f " Jont) — £(0)] dt.

Let € > 0 be given. Choosing n large, the first and last terms in the sum on the right-hand side above
can be made < €. Similarly, by choosing T large, the middle term can be made < €. It follows that,
for large T, the quantity on the left-hand side of the inequality above is less than 3e. Since € > 0 is
arbitrary, the proof is complete.

3. This is just Theorem 2.30 on page 61 in Folland.

4. Proof 1: Since f, — f in measure, {f,} is Cauchy in measure so by Theorem 2.30 there is a
subsequence { f,, tren such that f,, — f a.e. Since |f,,| < g for each k, |f| < g a.e. so f € L' also.
Since

|fo = fl=1fan+9—(f+9)| =g~ fu) = (g— f)| for each n € N,

it is clear that if f,, — f in measure, both f, + g — f + ¢ in measure and g — f,, — g — f in measure.
Since g+ f, > 0 a.e. and g — f, > 0 a.e., we may apply Problem 4 on the week 2 discussion worksheet

to find
/g+/f§liminf/(g+fn):/g+liminf/fn,
[o- [ £ <tmint [g- 1)~ [g-tmsuwp [ 1.

Thus, liminf [ f, > [ f > limsup [ f, so [ f =lim [ f,. To see that f, — f in L' also, simply note
that if f,, — f in measure, then |f, — f| — 0 in measure. Furthermore, it holds that |f,, — f| < 2|g]
a.e. By what was just proved, |f, — f| — 0 in L' which holds iff f,, — f in L.

Remark: Notice that I did not use o-finiteness.

Quick Proof: Since f, — f in measure, any subsequence of {f,} converges to f in measure also. Let
{fn.} be any subsequence of {f,}. Since f,, — f in measure, we can extract a further subsequence
{fnkj} that converges to f pointwise a.e. By assumption, \fnkj (z)] < g(z) for a.e. z and each ny;.

Hence, fnkj — f in L' by the dominated convergence theorem. In particular, every subsequence of

»} has a subsequence converging to f in L'. Since L' is a metric space, f, — f in L' also.
q

5. Clearly, d(f,g) > 0 and d(f,g) = d(g, f). Furthermore,

_ |f — gl _ ~
d(f,g)—/1+|f_g|du§/xdu—u(X)<



so d is well-defined. Since the integrand is nonnegative, d(f,g) = 0 iff |f — g| = 0 a.e., which holds iff

f =g ae. Set h(t) = &5 where t € [0,00). Then

1

W(t) = a+02 >0

for all ¢ > 0. Thus, h is non-decreasing. Since |f —g| < |f — gl + |3 — gl

lf — 4 19 — g lf — 4 19 — g _ N
d(f,g S/ — + = dp= | ————du+ | ————du=4d(f, ) +d(3, f
sos [ (gt T gt T )

for any measurable complex-valued function g. We conclude that d is a metric on the space of mea-
surable function.

1—",-f\f =7 Since p(fn, f) = 0asn — oo, hy, = 0

in L', hence, in measure by Proposition 2.29. Notice that, if 0 < € < 1, then h(t) > € if and only if

t > (1 —€)~1. Hence,
A= _
{x'1+|fn 7l = 6} { Hn f|>176}

In addition, the function ¢ +— (1 —#)~! is surjective as map (0, 1) — (0, 00). The preceding observations

show that the convergence of 14|-f|f ‘f\

Suppose now that f,, — f in measure. Let € > 0 be given. Then

/ ‘fn ‘ d 7/ |fn_f| d,u+/ |fn | d
L+ |fn— fl (@ilfu—fle L+ [ fn = fl (@il fu—fl<ey LH+ [ fn = fl

|fn — f|
——d en(X
<‘/{$ | fn—f|>€} 1+|fn_f| A M( )

<ul{x:1fu— 112 ) + en(a)

— eu(X) as n — oo.

Suppose f, — f with respect to d and define h,, :=

to zero in measure implies the convergence of f, to f in measure.

Since € > 0 is arbitrary, d(f,, f) — 0 as n — oo so f, — f with respect to d.
. We first prove the result when f € Cy(R). Set

Mg 1= $€[r£111ki] f(z) and My, := zeﬁla@] fa).

n n’ n

Then

MEn < Tl/ f(l') dr < Mk,n~
k

n

Since f is continuous, we may apply the mean value theorem for integrals to find x; € [E #] such
that

k+1
n

fa=n [ fia)da.

k

n

Thus,

i, 5 ([ o= 3 B

k=—n2 =—n2

For each fixed n, let I, := [n,n + 5]. Choosing n large, we can be sure that supp f C I,,. Hence, for
large n the sum on the right-hand side above is simply the Riemann sum of |f(x)| with intervals of
length % with a point x; in each interval. By calculus,

S Z alrwol= [ 1)

k2



Suppose now that f € L*(R) and choose g € CO(R) with [|f — g1 < € for € > 0 given. We have:

3 \/ S UBE \/ Dl -| 2 2|/fg<x>dxH
\ / ~ gl

s / 17(a) — gla) \dw+\ \/ ~lglla] +

g/j!ﬂm |+‘ ‘/Hl =gl | +

+1lgllpy = 171 s ]

€

> / ~ lgll:| +2e
Letting n — oo and using the first part, we conclude
n? k41
1 — < 2e.
dm | 30| 7 rwas] -1 <2
=—n2 Un

Since € > 0 is arbitrary, we are done.
7. Fix t € R and notice that
—t) —
o) = M@ =0 = f2)
1+ g(z)t
Hence, z — h(t,z) € L'(R). We first prove the claim for f € Co(R). In this case, h(t,R) € Co(R?)
so if t,, — to we have h(t,,z) — h(tg,z) for each fixed z € R. Since f € Cy(R), there is a constant

M > 0 such that |f(x)| < M for each z. Since t,, — to the sequence {¢,} is bounded. Hence, there is
a compact set K containing K =+ t,, for each n € NU {0}. Set s(z) := Mx . Then s € L*(R) and

|f(z — tn)| + |f(z)] < 2s(x) for each n

so we may apply the dominated convergence theorem to conclude H (t,,) — H(tg). It follows that H is
continuous when f € Cy(R).

Suppose now that f € L'(R) and let {¢,}$° C Co(R) be a sequence converging to f in L'(R). Using
the reverse triangle inequality followed by the triangle inequality, we find

[f(x=t) = f@)] _ |¢n(z—1t) = én(z)|
J el el 20 2l n < [ (1560 =) = 6o = )+ lonla) = S o
Since the right-hand side tends to zero as n — co, we see that
[9n(z —t) = du(2)] _ |f(z—1t) — f(2)|
1+ g(2)t 1+ g(x)*
Fix to € R and suppose t, — tg as k — oo. Then

<|f(@ =l +1f(2)] € L'(R).

in L'(R).

1+9() 1+M)
|pn (2 —tr) — Pn(2 )| |pn(z — to) — dn(z)]
*/R‘ T+ g(o)" Tron |
|Pn(@ —t0) — Pu(@)|  |f(z—to) — f()]
+/‘ 1+ g(z)to 1l M$



Let € > 0. By choosing n large, the first and last term in the sum on the right-hand side can be made
less than e. Hence, for n large,

|n(x = th) = dn(2)| _ |Pn(2 = to) = dn(2)]

dzx.
1+ g(a)t 1+ g(x)to !

|H(tx) — H(to)| < 2€+/R

Letting k& — oo in the inequality above and using what was proved first for Cy(R) functions, we
conclude that

lim |H (tx) — H(to)| < 2e.

k— o0

Since € > 0 is arbitrary, the limit is zero. Moreover, this holds for any ¢y € R so H is continuous.



