
Homework 3 Solutions

1. Set
A+ := {f ≥ 0} and A− := {f < 0}.

Then A+ and A− are in A and ∫
A+

f dµ =

∫
A−

f dµ = 0.

By assumption, both integrals on the right-hand side are zero. Since f does not change sign on A+

nor on A−, f = 0 a.e. on each of these sets. Since X = A+ ∪A−, it follows that f = 0 a.e. on X.

2. We first prove the result for f ∈ C0(R). Since f has compact support, we know that supp f ⊂ [a, b] for
some −∞ < a < b < ∞. Furthermore, by u-substitution we have∫ T

−T

f(s+ t) dt =

∫ s+T

s−T

f(t) dt.

The integral above is zero if s > b+ T or s < a− T . Hence, for T fixed we find∫ ∞

−∞

1

2T

∣∣∣ ∫ T

−T

f(s+ t) dt
∣∣∣ ds = 1

2T

∫ b+T

a−T

∣∣∣ ∫ s+T

s−T

f(t) dt
∣∣∣ ds

=
1

2T

(∫ a−T+
√
T

a−T

+

∫ b+T−
√
T

a−T+
√
T

+

∫ b+T

b+T−
√
T

)∣∣∣ ∫ s+T

s−T

f(t) dt
∣∣∣ ds.

Notice that

1

2T

(∫ a−T+
√
T

a−T

+

∫ b+T

b+T−
√
T

)∣∣∣ ∫ s+T

s−T

f(t) dt
∣∣∣ ds ≤ 1

2T
∥f∥L1

(∫ a−T+
√
T

a−T

dt+

∫ b+T

b+T−
√
T

dt
)

=
∥f∥L1√

T
→ 0 as T → ∞.

Hence, we only need to focus on the middle integral in the sum. For s ∈ (a − T +
√
T , b + T −

√
T ),

we have s+ T ≥ a+
√
T > b for T large and s− T ≤ b−

√
T < a for T large. Thus, for large T∫ s+T

s−T

f(t) dt =

∫ ∞

−∞
f(t) dt.

Then for large T

!

2T

∫ b+T−
√
T

a−T+
√
T

∣∣∣ ∫ s+T

s−T

f(t) dt
∣∣∣ ds = ∣∣∣ ∫ ∞

−∞
f(t) dt

∣∣∣ = ∣∣∣ ∫ ∞

−∞
f(t) dt

∣∣∣ · (1 + b− a

2
− 1√

T

)
→

∣∣∣ ∫ ∞

−∞
f(t) dt

∣∣∣ as T → ∞.

This proves the result when f ∈ C0(R).
Suppose now that f ∈ L1(R) and let {ϕn}∞1 ⊂ C0(R) such that ϕn → f in L1. Suppose further that
|ϕn(t)| ≤ |f(t)| for all t. For each n, T set

gn(s, T ) :=
1

2T

∣∣∣ ∫ T

−T

ϕn(s+ t) dt
∣∣∣ and g(s, T ) :=

1

2T

∣∣∣ ∫ T

−T

f(s+ t) dt
∣∣∣.
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The assumption that ϕn → f in L1 implies gn(s, T ) → g(s, T ) pointwise for each s, T fixed. Further-
more,

|gn(s, T )| ≤
1

2T

∫ T

−T

|ϕn(s+ t)| dt ≤ 1

2T

∫ T

−T

|f(s+ t)| dt ∈ L1(R; ds).

We may therefore apply the dominated convergence theorem to conclude that∫ ∞

−∞
|gn(s, T )− g(s, T )| ds → 0 as n → ∞

for each fixed T . Now,∣∣∣ ∫ ∞

−∞

1

2T

∣∣∣ ∫ T

−T

f(s+ t) dt
∣∣∣ ds− ∣∣∣ ∫ ∞

−∞
f(t) dt

∣∣∣∣∣∣ ≤ ∫ ∞

−∞
|g(s, T )− gn(s, T )| ds

+
∣∣∣gn(s, T )− ∣∣∣ ∫ ∞

−∞
ϕn(t) dt

∣∣∣∣∣∣
+

∫ ∞

−∞
|ϕn(t)− f(t)| dt.

Let ϵ > 0 be given. Choosing n large, the first and last terms in the sum on the right-hand side above
can be made < ϵ. Similarly, by choosing T large, the middle term can be made < ϵ. It follows that,
for large T , the quantity on the left-hand side of the inequality above is less than 3ϵ. Since ϵ > 0 is
arbitrary, the proof is complete.

3. This is just Theorem 2.30 on page 61 in Folland.

4. Proof 1: Since fn → f in measure, {fn} is Cauchy in measure so by Theorem 2.30 there is a
subsequence {fnk

}k∈N such that fnk
→ f a.e. Since |fnk

| ≤ g for each k, |f | ≤ g a.e. so f ∈ L1 also.
Since

|fn − f | = |fn + g − (f + g)| = |(g − fn)− (g − f)| for each n ∈ N,

it is clear that if fn → f in measure, both fn + g → f + g in measure and g − fn → g − f in measure.
Since g+ fn ≥ 0 a.e. and g− fn ≥ 0 a.e., we may apply Problem 4 on the week 2 discussion worksheet
to find ∫

g +

∫
f ≤ lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn,∫

g −
∫

f ≤ lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn.

Thus, lim inf
∫
fn ≥

∫
f ≥ lim sup

∫
fn so

∫
f = lim

∫
fn. To see that fn → f in L1 also, simply note

that if fn → f in measure, then |fn − f | → 0 in measure. Furthermore, it holds that |fn − f | ≤ 2|g|
a.e. By what was just proved, |fn − f | → 0 in L1 which holds iff fn → f in L1.

Remark: Notice that I did not use σ-finiteness.

Quick Proof: Since fn → f in measure, any subsequence of {fn} converges to f in measure also. Let
{fnk

} be any subsequence of {fn}. Since fnk
→ f in measure, we can extract a further subsequence

{fnkj
} that converges to f pointwise a.e. By assumption, |fnkj

(x)| ≤ g(x) for a.e. x and each nkj
.

Hence, fnkj
→ f in L1 by the dominated convergence theorem. In particular, every subsequence of

{fn} has a subsequence converging to f in L1. Since L1 is a metric space, fn → f in L1 also.

5. Clearly, d(f, g) ≥ 0 and d(f, g) = d(g, f). Furthermore,

d(f, g) =

∫
|f − g|

1 + |f − g|
dµ ≤

∫
X

dµ = µ(X) < ∞
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so d is well-defined. Since the integrand is nonnegative, d(f, g) = 0 iff |f − g| = 0 a.e., which holds iff
f = g a.e. Set h(t) = t

1+t where t ∈ [0,∞). Then

h′(t) =
1

(1 + t)2
≥ 0

for all t ≥ 0. Thus, h is non-decreasing. Since |f − g| ≤ |f − g̃|+ |g̃ − g|,

d(f, g) ≤
∫ ( |f − g̃|

1 + |f − g̃|
+

|g̃ − g|
1 + |g̃ − g|

)
dµ =

∫
|f − g̃|

1 + |f − g̃|
dµ+

∫
|g̃ − g|

1 + |g̃ − g|
dµ = d(f, g̃) + d(g̃, f)

for any measurable complex-valued function g̃. We conclude that d is a metric on the space of mea-
surable function.

Suppose fn → f with respect to d and define hn := |fn−f |
1+|fn−f | . Since ρ(fn, f) → 0 as n → ∞, hn → 0

in L1, hence, in measure by Proposition 2.29. Notice that, if 0 < ϵ < 1, then h(t) ≥ ϵ if and only if
t ≥ ϵ(1− ϵ)−1. Hence, {

x :
|fn − f |

1 + |fn − f |
≥ ϵ

}
=

{
x : |fn − f | ≥ ϵ

1− ϵ

}
.

In addition, the function t 7→ t(1−t)−1 is surjective as map (0, 1) → (0,∞). The preceding observations

show that the convergence of |fn−f |
1+|fn−f | to zero in measure implies the convergence of fn to f in measure.

Suppose now that fn → f in measure. Let ϵ > 0 be given. Then∫
|fn − f |

1 + |fn − f |
dµ =

∫
{x:|fn−f |≥ϵ}

|fn − f |
1 + |fn − f |

dµ+

∫
{x:|fn−f |<ϵ}

|fn − f |
1 + |fn − f |

dµ

≤
∫
{x:|fn−f |≥ϵ}

|fn − f |
1 + |fn − f |

dµ+ ϵµ(X)

≤ µ({x : |fn − f | ≥ ϵ}) + ϵµ(x)

→ ϵµ(X) as n → ∞.

Since ϵ > 0 is arbitrary, d(fn, f) → 0 as n → ∞ so fn → f with respect to d.

6. We first prove the result when f ∈ C0(R). Set

mk,n := min
x∈[ kn , k+1

n ]
f(x) and Mk,n := max

x∈[ kn , k+1
n ]

f(x).

Then

mk,n ≤ n

∫ k+1
n

k
n

f(x) dx ≤ Mk,n.

Since f is continuous, we may apply the mean value theorem for integrals to find xk ∈ [ kn ,
k+1
n ] such

that

f(xk) = n

∫ k+1
n

k
n

f(x) dx.

Thus,

lim
n→∞

n2∑
k=−n2

∣∣∣ ∫ k+1
n

k
n

f(x) dx
∣∣∣ = lim

n→∞

n2∑
k=−n2

1

n
|f(xk)|

For each fixed n, let In := [n, n + 1
n ]. Choosing n large, we can be sure that supp f ⊂ In. Hence, for

large n the sum on the right-hand side above is simply the Riemann sum of |f(x)| with intervals of
length 1

n with a point xk in each interval. By calculus,

lim
n→∞

n2∑
k=−n2

1

n
|f(xk)| =

∫
R
|f(x)| dx.
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Suppose now that f ∈ L1(R) and choose g ∈ C0(R) with ∥f − g∥L1 < ϵ for ϵ > 0 given. We have:∣∣∣ n2∑
k=−n2

∣∣∣ ∫ k+1
n

k
n

f(x) dx
∣∣∣− ∥f∥L1

∣∣∣ ≤ ∣∣∣ n2∑
k=−n2

∣∣∣ ∫ k+1
n

k
n

f(x) dx
∣∣∣− ∣∣∣ n2∑

k=−n2

∣∣∣ ∫ k+1
n

k
n

g(x) dx
∣∣∣∣∣∣

+
∣∣∣ n2∑
k=−n2

∣∣∣ ∫ k+1
n

k
n

g(x) dx
∣∣∣− ∥g∥L1

∣∣∣+ |∥g∥L1 − ∥f∥L1 |

≤
n2∑

k=−n2

∫ k+1
n

k
n

|f(x)− g(x)| dx+
∣∣∣ n2∑
k=−n2

∣∣∣ ∫ k+1
n

k
n

g(x) dx
∣∣∣− ∥g∥L1

∣∣∣+ ϵ

≤
∫ n2

−n2

|f(x)− g(x)|+
∣∣∣ n2∑
k=−n2

∣∣∣ ∫ k+1
n

k
n

g(x) dx
∣∣∣− ∥g∥L1

∣∣∣+ ϵ

≤
∣∣∣ n2∑
k=−n2

∣∣∣ ∫ k+1
n

k
n

g(x) dx
∣∣∣− ∥g∥L1

∣∣∣+ 2ϵ.

Letting n → ∞ and using the first part, we conclude

lim
n→∞

∣∣∣ n2∑
k=−n2

∣∣∣ ∫ k+1
n

k
n

f(x) dx
∣∣∣− ∥f∥L1

∣∣∣ ≤ 2ϵ.

Since ϵ > 0 is arbitrary, we are done.

7. Fix t ∈ R and notice that

h(t, x) =
|f(x− t)− f(x)|

1 + g(x)t
≤ |f(x− t)|+ |f(x)| ∈ L1(R).

Hence, x 7→ h(t, x) ∈ L1(R). We first prove the claim for f ∈ C0(R). In this case, h(t,R) ∈ C0(R2)
so if tn → t0 we have h(tn, x) → h(t0, x) for each fixed x ∈ R. Since f ∈ C0(R), there is a constant
M > 0 such that |f(x)| ≤ M for each x. Since tn → t0 the sequence {tn} is bounded. Hence, there is
a compact set K̃ containing K ± tn for each n ∈ N ∪ {0}. Set s(x) := MχK̃ . Then s ∈ L1(R) and

|f(x− tn)|+ |f(x)| ≤ 2s(x) for each n

so we may apply the dominated convergence theorem to conclude H(tn) → H(t0). It follows that H is
continuous when f ∈ C0(R).
Suppose now that f ∈ L1(R) and let {ϕn}∞1 ⊂ C0(R) be a sequence converging to f in L1(R). Using
the reverse triangle inequality followed by the triangle inequality, we find∫

R

∣∣∣ |f(x− t)− f(x)|
1 + g(x)t

− |ϕn(x− t)− ϕn(x)|
1 + g(x)t

∣∣∣ dx ≤
∫
R

(
|f(x− t)− ϕn(x− t)|+ |ϕn(x)− f(x)|

)
dx.

Since the right-hand side tends to zero as n → ∞, we see that

|ϕn(x− t)− ϕn(x)|
1 + g(x)t

→ |f(x− t)− f(x)|
1 + g(x)t

in L1(R).

Fix t0 ∈ R and suppose tk → t0 as k → ∞. Then

|H(tk)−H(t0)| ≤
∫
R

∣∣∣ |f(x− tk)− f(x)|
1 + g(x)tk

− |f(x− t0)− f(x)|
1 + g(x)t0

∣∣∣ dx
≤

∫
R

∣∣∣ |f(x− tk)− f(x)|
1 + g(x)tk

− |ϕn(x− tk)− ϕn(x)|
1 + g(x)tk

∣∣∣ dx
+

∫
R

∣∣∣ |ϕn(x− tk)− ϕn(x)|
1 + g(x)tk

− |ϕn(x− t0)− ϕn(x)|
1 + g(x)t0

∣∣∣ dx
+

∫
R

∣∣∣ |ϕn(x− t0)− ϕn(x)|
1 + g(x)t0

− |f(x− t0)− f(x)|
1 + g(x)t0

∣∣∣ dx.
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Let ϵ > 0. By choosing n large, the first and last term in the sum on the right-hand side can be made
less than ϵ. Hence, for n large,

|H(tk)−H(t0)| ≤ 2ϵ+

∫
R

∣∣∣ |ϕn(x− tk)− ϕn(x)|
1 + g(x)tk

− |ϕn(x− t0)− ϕn(x)|
1 + g(x)t0

∣∣∣ dx.
Letting k → ∞ in the inequality above and using what was proved first for C0(R) functions, we
conclude that

lim
k→∞

|H(tk)−H(t0)| ≤ 2ϵ.

Since ϵ > 0 is arbitrary, the limit is zero. Moreover, this holds for any t0 ∈ R so H is continuous.
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