Homework 4 Solutions

1. Let € > 0 and choose § > 0 so that if £ C (0,1) is Lebesgue measurable with m(E) < § we have
/ [fn(x)| dx < € for each n=1,2,....
E

Using that f € L'((0,1)), we may adjust ¢ if necessary to ensure that

[ @l <o

also. Since f,, — f a.e. on (0,1) we may choose a Lebesgue measurable £ C (0,1) such that f, — f
uniformly on E°N (0,1) and m(E) < 6. Then

[, 10 sl = [ 15 - sz [ 150 - @l

<2t [ fuo) - fla)]do
E<n(0,1)
Taking the limit on each side of the inequality above shows that

lim |fn(z) — f(z)] dx < 2e.

Since € > 0 is arbitrary, the limit on the left-hand side is zero. Hence, f,, — f in L'((0,1)).

2. We have
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The limit of the function on the right-hand side of the inequality as y — 0% is 7—!. Hence, there is an
€ > 0 and a constant C' > 0 such that
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14+y21—e™ ~ 14y

5 on (0,¢).

On the other hand,
|siny| 14 e~ ™ < 1+e ™
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Since Y
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there is another constant C' such that

: oy
|siny| 1+e <

T+ l—em = 14y2 (€00).

Taking Cj := max{C, C'} shows

|siny| 14 e ™ < Co
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on (0, c0).

Since the function on the right-hand side is in L!((0, o)), we conclude
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dy < o0,

as desired.

3. We first prove the result when f € Cy(R). Fix 29 € R and let € > 0. Choose § > 0 such that |z —x¢| < ¢
implies | f(z) — f(xo)| < e. If |h| < J, then

’% /:OM f(z)dx — f(xo)’ — ‘% /xmo+h(f(x) — f(a:o))dx‘ <e

o—h o—h

It follows that
1 o + h

f(z)dx = f(zo) for each zy € R

lim —
h—0+ 2R oo _p

whenever f € Cy(R). Note also that f € Cy(R) is uniformly continuousﬂ as well so the § above can
be chosen to be independent of xy. It follows that f;, — f uniformly as h — 0F. Let ¢ > 0 and

choose |h| < d so small that |fr(x) — f(z)| < € for each x € R. Choose —00 < a < b < oo so that
supp f £ h C [a,b] for |h| < 1. Then

1 xz+h b+1 1 x+h b+1
— ft)dt — f(x ’dmﬁ/ ‘—/ ft)dt — f(x ’dm<e/ dr =€(b—a+2).
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Since € > 0 is arbitrary, f, — f in L*(R) as h — 0.
Suppose now that f € L'(R) and let {f,}5° C Co(R) be such that f, — f in L*(R). We have

+h

/R‘th(/:;hf(t)dt_f(x))‘dxg/R‘th(/:zhf(t)—fn(t))dt)’dx—l-/R‘;h(/:h Ja®)dt = fa(@))|da

+ / fule) — f()| do
=T+ 1I+1I1I.

The integrals IT and I1I above can be small by choosing |h| small and n large, respectively. On the
other hand, the L' convergence of f,, to f implies that (f,)n(x) — fn(z) pointwise in 2 as n — oo.
For I, notice that by a change of variable and the Tonelli Theorem

x+h h
1< g [ 0= r@ldas =g [ ] i@n - fue e nldedt = [ 17 - f(@)]de

Thus, I tends to zero as n — oo. Combining the estimates for I, I1, and 111 shows that f;, — f in
L'(R) as h — 0.

IFunctions in Cp(R) are always uniformly continuous.



1
4. The trick is to show that g(x) :==>""  n f:+ " |f(x 4+ y)| dy is locally L! since this implies g(z) < oo

n=1
a.e. which implies a.e. absolute convergence of the original series. Observe that by Tonelli’s theorem

applied twice
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Setting b = a + 1 gives
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Moreover,
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since f € L'(R). Tt follows that

a+1
/ g(x)dx < oo for every a € R,
a

so for each a we see that g(z) < oo a.e. on (a,a + 1). Since each = € R lies in an interval of the form
(a,a + 1) for some a, the proof is complete.

5. Suppose f,g € Li (R) and a > 0. Then

/0 2)di = / / F(t)g() didz
:/ / F(6)a( dz—/ / F(£)g(x) dtda
(Fubini) = F(a / / t) dudt
—/O G(2)f(x)dx

L if (z,8) € {[f(x)] > £}

0, otherwise.

/ m(t) dt = / / X{\f(a:)\>t}(x7 t) dzx dt.
0 0 R

By the Tonelli Theorem, we can switch the order of integratiorﬂ

00 oo [f ()]
/ / X{|f(z)|>t} (.’L‘, t) dr dt = / / X{‘f(x)|>t}(a?, t) dtdx = / / dtdx = / ‘f(fL')| dr.
0 R RJO RJO R

6. Define
X{If (@) >t} (@, 1) = {

Then

2To be precise, you should justify why we can use Tonelli.



Let € > 0. Then

o0 oo o k+1 00
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where we have made the change of variable ¢ — €t in the first equality. It remains to show

€1_1)1(1)1 eZm (ek) /R|f(x)|da:

We begin with the case f € Cy(R). For each k, e set
Ey.:={x:ek <|f(z)|} and Fy := {x : ke < |f(z)] < (k + 1)e}.

|f(z)] |f(z)] |f(z)]
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Then
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Multiplying by € on each side of the inequality gives

/|f(x)|dx:/ F@)do+ €Y km(Fio) + €S mFio) = I + I + ITL..
R {0<|f(=)|<e} k=1 k=1

We handle each term in the sum individually. Notice that |f(z)|x{o<|f(x)<e}(®) < |f(x)| for each
x Furthermore, |f(x)|x{o<|f(z)<e}(z) = 0 as € = 07 so we may apply the dominated convergence
theorem to conclude that I, — 0 as € — 0. For the second term, we have

II. = eZ km(Fy.e) = eZm(E;w) = eZm(ek).
k=1 k=1 k=1

For the last term, note that the compact support of f shows m({z : |f(z)] > 0}) < m(supp f) < oo
and
II1, = em(Ey ) < em({x:|f(x)] > 0}) > 0ase— 0.

Using the estimates above, we conclude

/ o)l < i > mich) < [ @l s

so the result holds for f € Cy(R). Suppose now that f € L*(R) and 6 > 0 is given. Choose ¢ € Cy(R)
such that || f — ¢||;1 < § and set m(ke) := {x : |¢(x)| > ek}. We may also choose ¢ so that |¢(z)| <
|f(z)| for each x € R. In this case, m(ke) < m(ke) for each k,e. We have:

‘eim(ke)—\lfﬂp g] i (ke) — (k) M Z (k) — 1|9l 1
k=1 k=1

The last term is < § and choosing € > 0 small ensures the middle term is < 4. For the first term,
notice that

+ o= flipr-

‘eZ(m(ke) —m(ke))‘ = e mlke) — €3 in(ek) < / (@) da — €S rm(ek).
k=1 k=1 R k=1

k=1



Hence,

< 25+/R|f(x)|d9:—62ﬁ1(ek).

k=1

(o]
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Taking the limit as ¢ — 0% on each side of the inequality and using the reverse triangle inequality then
gives

lim
e—0t

ey mke) = | fllps| <26 +1If — @l < 36.
k=1

Since § > 0 is arbitrary, the limit on the left-hand side of the expression above is zero and the proof is
complete.
7. We first assume f € Co(R). By writing g = g7 — g~, we may assume g > 0 alscﬂ We have

k+1
n

f@)g(nz)de =" f(x)g(nx),
/ /

k
kez”’ wT

where the sum is finite since f has compact support. Since g > 0, we have

(| min f@)g(na) < f@)g(na) < (| max f(x))g(na)f.

[ET,ET] [ET,ﬁT]
Set
m = [ET{H&T]JC(@ and M := [ﬁgﬁﬂf(m)-
Integrating the inequalities above, we get
kt+1p kt+1p k+1p
m/ g(nz)dx < / f(x)g(nzx)dx < M/ g(nz) dz.
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Making the change of variable y = nz and using that g is periodic with period T', we see

kHlp 1 kDT 1

g(nx) dx = */ 9(y)dy = — /OTg(y) dy.

kp n Jkr n
Hence, (assuming g # 0 since the problem is trivial otherwise)

kt1p
Jeh " f(2)g(ne) dx
m< = < M.

a % fng(x) dx

Using the continuity of f, we can thereby apply the intermediate value theorem to find x; € [%T7 @T]
such that

Jir " f@)g(n) do
flog) = TTlL fOT o(2) e for each k.
Then
[ s@tne) do = > (: [ o) s
T\/1 (7
- (éﬂxk)n)(T/o o(c) dz).

The first term in the product is just a Riemann sum for f, so letting n — oo gives the result when
f € Co(R). For the general case when f € L'(R), just argue by approximation in Cy(R) as usualﬂ

3Both g* € C(R) are periodic with period T'.
41’1l leave this part for the reader because I'm sleep deprived.



