
Homework 5 Solutions

1. By the Beppo-Levi theorem, we have∫ b

a

∞∑
n=1

√
n
∣∣∣ ∫ √

n+n−1

√
n

f(x+ y) dy
∣∣∣ dx ≤

∞∑
n=1

√
n

∫ √
n+n−1

√
n

∫ b

a

|f(x+ y)| dxdy

(t = x+ y) =

∞∑
n=1

√
n

∫ √
n+n−1

√
n

∫ b+y

a+y

|f(t)| dtdy

≤
∞∑

n=1

√
n

∫ √
n+n−1

√
n

∫ b+
√
n+n−1

a+
√
n

|f(t)| dtdy

=

∞∑
n=1

1√
n

∫ b+
√
n+n−1

a+
√
n

|f(t)| dt

≤
∞∑

n=1

1√
n

∫ b+
√
n+1

a+
√
n

|f(t)| dt.

Now, run the same argument as in Problem 2 below with b+ 1 replacing b.

2. Let a, b ∈ R with −∞ < a < b < ∞. By the Beppo-Levi theorem, we have∫ b

a

∞∑
n=1

1√
n
|f(x−

√
n)| dx ≤

∞∑
n=1

1√
n

∫ b

a

|f(x−
√
n)| dx

(t = x−
√
n) ≤

∞∑
n=1

1√
n

∫ b−
√
n

a−
√
n

|f(t)| dt

=

∞∑
n=1

1√
n

∫
R
|f(t)|χ[a−

√
n,b−

√
n](t) dt

(Monotone Convergence) =

∫
R

∞∑
n=1

1√
n
χ[a−

√
n,b−

√
n](t)|f(t)| dt.

Set ϕ(t) :=
∑∞

n=1
1√
n
χ[a−

√
n,b−

√
n](t). We will show that ϕ ∈ L∞(R). Intuitively, the idea is to view

each of the functions χ[a−
√
n,b−

√
n](t) as carts moving toward −∞ of length b − a and, for a given t,

to estimate the first n and last n1 for which t is in the cart defined by χ[a−
√
n,b−

√
n](t). We consider

several cases:

(a) t ≤ a − 1: In this case, we can be sure that t is in a cart after at least (a − t)2 − 1 steps and is
no longer in a cart after (b − t)2 + 1 steps. To see this, first suppose t is an integer. Then a − t
and b − t are integers and the first step for which t is in a cart will be (a − t)2 and the last will
be (b− t)2. By subtracting and adding one, we can handle the case when a− t and b− t are not
integers, since each individual step takes us a distance less than one from where we stood at the
previous step. Hence, for each t we only need to sum over n ∈ N lying between A(t) := (a− t)2−1

1I will call these the number of “steps” we have taken with our cart.
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and B(t) := (b− t)2 + 1. In other words, in this case we can write

ϕ(t) =
∑

A(t)≤n≤B(t)

1√
n

=

⌈B(t)⌉∑
n=⌊A(t)⌋

1√
n

≤
⌈B(t)⌉∑

n=⌊A(t)⌋

∫ n+1

n

1√
s
ds

=

∫ ⌈B(t)⌉+1

⌊A(t)⌋

1√
s
ds

≤
∫ B(t)+1

A(t)

1√
s
ds

= 2
(
(B(t) + 1)

1
2 −A(t)

1
2

)
→ 0 as t → −∞.

Since 2
(
(B(t) + 1)

1
2 − A(t)

1
2

)
is continuous for t < a − 1, the inequalities above imply ϕ(t) is

uniformly bounded on (−∞, a− 1).

(b) If a− 1 ≤ t ≤ b, then a similar argument shows that

ϕ(t) =

(b−a+1)2∑
n=1

1√
n
< ∞.

(c) If t > b, then ϕ(t) = 0 by definition.

Combining (a),(b), and (c) implies ϕ ∈ L∞(R). Thus, combining this with the first string of inequalities
yields ∫ b

a

∞∑
n=1

1√
n
|f(x−

√
n)| dx ≤ ∥ϕ∥L∞(R)

∫
R
|f(t)| dt < ∞

since f ∈ L1(R). To conclude, note that a, b are arbitrary and apply the usual argument.

3. For n,m ∈ N set

E := L2(R) ∩ L1(R) and En,m := {f ∈ L2(R) :
∫ m

−m

|f(x)| dx < n}.

Then E = ∩m∈N ∪n∈N En,m. We will show that each of the sets En,m are open in L2(R) which will
show that E is Borel. Let ϵ > 0 and fix f ∈ En,m. We need to show that for ϵ small the L2-ball Bϵ(f)
is contained in En,m. Suppose g ∈ Bϵ(f). Then∫ m

−m

|g(x)| dx =

∫ m

−m

|g(x)− f(x)| dx+

∫ m

−m

|f(x)| dx

(Cauchy-Schwarz) ≤ (2m)
1
2

(∫ m

−m

|g(x)− f(x)|2 dx
) 1

2

+

∫ m

−m

|f(x)| dx

≤ (2m)
1
2 ϵ+

∫ m

−m

|f(x)| dx.

Hence, if ϵ < (2m)−
1
2 (n−

∫m

−m
|f(x)| dx), then

∫m

−m
|g(x)| dx < n also. In particular, for this ϵ > 0 the

ball Bϵ(f) is contained in En,m implying En,m is open. This completes the proof.
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4. Let f ∈ Lp(R) and g ∈ Lq(R) for 1 ≤ p, q ≤ ∞. Define F and G as in the problem statement. We
break the proof up into several cases:

(i) Continuity: We first consider when 1 < p < ∞. Fix x0 ∈ R and let xn → x0 be a sequence
tending to x0 as n → ∞. Using the Hölder inequality, we find

|f(xn)− F (x0)| ≤
∫ xn

x0

|f(t)| dt ≤ ∥f∥Lp(R)|xn − x0|
1
p → 0 as n → ∞.

If p = ∞, then
|F (xn)− F (x0)| ≤ ∥f∥L∞(R)|xn − x0| → 0 as n → ∞.

When p = 1, continuity is immediate by absolute continuity of the integral.

(ii) We now prove that G as defined in the problem statement is in L1(R) for a > 2− 1
p − 1

q . Again,
we consider several cases:

(a) p = q = ∞ : In this case, a > 2 and

|G(x)| ≤ ∥f∥L∞∥g∥L∞
|x|

(1 + |x|)a
≤ ∥f∥L∞∥g∥L∞

1

(1 + |x|)a−1
∈ L1(R)

so G ∈ L1(R).
(b) p = q = 1: In this case, a > 1 and∫

R
|G(x)| dx ≤ ∥f∥L1

∫
R

|g(x)|
(1 + |x|)a

dx ≤ ∥f∥L1∥g∥L1

where we have used (1 + |x|)−a < 1 in the last inequality.

(c) p = 1 and q = ∞: In this case a > 1. We have∫
R
|G(x)| dx ≤ ∥g∥L∞∥f∥L1

∫
R

1

(1 + |x|)a
dx < ∞.

(d) p = ∞ and q = 1: We have∫
R
|G(x)| dx ≤ ∥f∥L∞

∫
R

|x|
(1 + |x|)a

|g(x)| dx ≤ ∥f∥L∞∥g∥L1 .

(e) p ∈ (1,∞) and q = ∞: By the Hölder inequality, we have∫
R
|G(x)| dx ≤ ∥g∥L∞

∫
R
(1 + |x|)−a

∫ x

0

|f(t)| dtdx

≤ ∥g∥L∞∥f∥Lp

∫
R

|x|1−
1
p

(1 + |x|)a
dx

≤ ∥g∥L∞∥f∥Lp

∫
R

1

(1 + |x|)a−1+ 1
p

dx < ∞

since a− 1 + 1
p > 1.

(f) p = ∞ and q ∈ (1,∞): By the Hölder inequality, we have∫
R
|G(x)| dx ≤ ∥f∥L∞

∫
R

|x|
(1 + |x|)a

|g(x)| dx

≤ ∥f∥L∞

∫
R

|g(x)|
(1 + |x|)a−1

dx

≤ ∥f∥L∞∥g∥Lq

(∫
R

1

(1 + |x|)
q

q−1 (a−1)
dx

)1− 1
q

< ∞

since a− 1 > 1− 1
q = q

q−1 .
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(g) 1 < p, q < ∞: In this case, we simply apply the Hölder inequality twice. We have∫
R
|G(x)| dx ≤ ∥f∥Lp

∫
R

|x|1−
1
p

(1 + |x|)a
|g(x)| dx

≤ ∥f∥Lp

∫
R

1

(1 + |x|)a−1+ 1
p

|g(x)| dx

≤ ∥f∥Lp∥g∥Lq

(∫
R

1

(1 + |x|)
q

q−1 (a−1+ 1
p )

dx
)1− 1

q

< ∞

since a− 1 + 1
p > 1− 1

q .

Combining all cases completes the proof.

5. Applying the change of variable t = x2, we find∫ ∞

0

|f(x2)x−a sinx| dx =
1

2

∫ ∞

0

|f(t)t−
a+1
2 sin

(
t
1
2

)
| dt

=
1

2

∫ 1

0

|f(t)t−
a+1
2 sin

(
t
1
2

)
| dt+ 1

2

∫ ∞

1

|f(t)t−
a+1
2 sin

(
t
1
2

)
| dt

:= I1 + I2.

We estimate each of the integrals separately starting with I1. Using that | sin
(
t
1
2

)
| ≤ t

1
2 we find

I1 ≤ 1

2

∫ 1

0

|f(t)|t− a
2 dt

(Hölder) ≤ 1

2

(∫ 1

0

|f(t)|3 dt
) 1

3
(∫ 1

0

t−
3a
4 dt

) 2
3

≤ 1

2

(∫ ∞

0

|f(t)|3 dt
) 1

3
(∫ 1

0

t−
3a
4 dt

) 2
3

Since a < 4
3 , we have 3a

4 < 1 so the second integral in the product is finite. Hence, I1 < ∞. A similar
computation works for I2:

I2 =
1

2

∫ ∞

1

|f(t)t−
a+1
2 sin

(
t
1
2

)
| dt

≤ 1

2

∫ ∞

1

|f(t)|t−
a+1
2 dt

(Hölder) ≤ 1

2

(∫ ∞

1

|f(t)|3 dt
) 1

3
(∫ ∞

1

t−
3(a+1)

4 dt
) 2

3

≤ 1

2

(∫ ∞

0

|f(t)|3 dt
) 1

3
(∫ ∞

1

t−
3(a+1)

4 dt
) 2

3

.

Since 3(a+1)
4 > 1, the second integral in the product is finite so I2 < ∞ also. This completes the proof.

6. Write ∫
R
|f(y)| dy =

∫
|y|≤1

|f(y)| dy +
∫
|y|>1

|f(y)| dy =: I1 + I2.

We estimate each of the integrals separately. The easiest one is I1. If p = 1, then I1 is finite immediately.
If p > 1, then applying Hölder’s inequality with g = χ[−1,1] shows that I1 < ∞. Hence, we focus on I2.

Notice that

|y − x| ≤ |x|
2

⇔ x− |x|
2

≤ y ≤ |x|
2

+ x.
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For each x such that |x| ≥ 1, define the interval Jx by

Jx :=
{
y : x− |x|

2
≤ y ≤ x+

|x|
2

}
and note that |Jx| = |x| for each x. Applying the Hölder inequality and using the hypothesis, we find∫

Jx

|f(y)| dy ≤ |x|
1
q

(∫
Jx

|f(y)|p dx
) 1

p

≤ |x|
1
q |x|−

a
p

= |x|α,

where α = a+1
p −1 > 0 since a+1 > p and 1

p +
1
q = 1. To conclude, observe that since (1,∞) ⊂ ∪∞

j=0J2j
we have ∫ ∞

1

|f(y)| dy ≤
∞∑
0

∫
J2j

|f(y)| dy

≤
∞∑
j=0

( 1

2α

)j

< ∞.

An identical argument can be used to estimate
∫ 1

−∞ |f(y)| dy, and the case when p = 1 is identical
except that we do not apply the Hölder inequality in the first estimate. It follows that I2 < ∞ so
f ∈ L1(R).
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