Homework 5 Solutions

1. By the Beppo-Levi theorem, we have
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Now, run the same argument as in Problem 2 below with b + 1 replacing b.

2. Let a,b € R with —o0 < a < b < co. By the Beppo-Levi theorem, we have
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Set ¢(t) :== > 00, ﬁx[a,\/ﬁ)b,m(t). We will show that ¢ € L*°(R). Intuitively, the idea is to view
each of the functions X[, /m s m (t) as carts moving toward —oo of length b — a and, for a given ¢,

to estimate the first n and last n’| for which ¢ is in the cart defined by X[o_, /75— m)(t). We consider
several cases:

(a) t < a— 1: In this case, we can be sure that t is in a cart after at least (a —t)? — 1 steps and is
no longer in a cart after (b —t)? + 1 steps. To see this, first suppose ¢ is an integer. Then a — ¢
and b — t are integers and the first step for which ¢ is in a cart will be (a — t)? and the last will
be (b —t)2. By subtracting and adding one, we can handle the case when a —t and b — ¢ are not
integers, since each individual step takes us a distance less than one from where we stood at the
previous step. Hence, for each ¢t we only need to sum over n € N lying between A(t) := (a—1)?—1

1T will call these the number of “steps” we have taken with our cart.



and B(t) := (b —t)? + 1. In other words, in this case we can write
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Since 2((B(t) +1)2 — A(t)%) is continuous for ¢t < a — 1, the inequalities above imply ¢(t) is
uniformly bounded on (—oco,a — 1).

(b) If a — 1 <t < b, then a similar argument shows that

(c) If t > b, then ¢(t) = 0 by definition.

Combining (a),(b), and (c) implies ¢ € L>°(R). Thus, combining this with the first string of inequalities
yields
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since f € L'(R). To conclude, note that a,b are arbitrary and apply the usual argument.

. For n,m € N set

m

E:=L*R)NLYR) and E,, , := {f € L*(R) : / |f(z)|dz < n}.

—m

Then E = Npmen Unen En m. We will show that each of the sets E, ., are open in L?(R) which will
show that E is Borel. Let € > 0 and fix f € E,, ,,,. We need to show that for € small the L2-ball B.(f)
is contained in E,, ,,,. Suppose g € B.(f). Then
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Hence, if € < (2m)~ 2 (n — J7 1f(x)|dz), then [™ |g(x)|dz < n also. In particular, for this € > 0 the

ball B.(f) is contained in E,, ,, implymg B, m is open This completes the proof.



4. Let f € LP(R) and g € LY(R) for 1 < p,q < co. Define F and G as in the problem statement. We
break the proof up into several cases:

(i) Continuity: We first consider when 1 < p < oo. Fix zg € R and let x,, — z¢ be a sequence
tending to g as n — oo. Using the Holder inequality, we find
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When p = 1, continuity is immediate by absolute continuity of the integral.

(i) We now prove that G as defined in the problem statement is in L*(R) for a > 2 — % — %. Again,
we consider several cases:

(a) p=¢q = 00: In this case, a > 2 and
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so G € LY(R).
(b) p =g =1: In this case, a > 1 and
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where we have used (1 + |z|)~* < 1 in the last inequality.
(¢) p=1and ¢ = oo: In this case a > 1. We have
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(d) p=o0 and ¢ = 1: We have
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(e) p € (1,00) and ¢ = co: By the Holder inequality, we have
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(f) p=o0 and g € (1,00): By the Holder inequality, we have
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(g) 1 <p,q < oo: In this case, we simply apply the Holder inequality twice. We have
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Combining all cases completes the proof.

5. Applying the change of variable t = x2, we find
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We estimate each of the integrals separately starting with I;. Using that |sin (t%)\ <t we find

I

IN

L[t a
L[ wora) ([ e a)
[ ooral e ve

Since a < %, we have %“ < 1 so the second integral in the product is finite. Hence, I; < co. A similar
computation works for Is:

(Holder)
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Since =—— > 1, the second integral in the product is finite so Is < oo also. This completes the proof.

6. Write
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We estimate each of the integrals separately. The easiest oneis I3. If p = 1, then [; is finite immediately.
If p > 1, then applying Holder’s inequality with g = x[_1,1) shows that I; < co. Hence, we focus on I5.
Notice that
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For each x such that |z| > 1, define the interval J, by
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and note that |J,| = |z| for each . Applying the Holder inequality and using the hypothesis, we find
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where o = “Tfl —1 > 0since a+1 > p and %—&—% = 1. To conclude, observe that since (1, 00) C U5Z g Jai
we have
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An identical argument can be used to estimate f_loo |7 (y)| dy, and the case when p = 1 is identical
except that we do not apply the Holder inequality in the first estimate. It follows that I < oo so

f e L\(R).



