Homework 4 (Due Saturday, February 3, 2024, 11:59 Pm)
Problem 1. Let $f_{n} \in L^{1}((0,1))$ be such that for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\int_{E}\left|f_{n}(x)\right| d x<\varepsilon
$$

whenever $m(E)<\delta$ and $n=1,2, \ldots$. Assume that $f_{n} \rightarrow f$ almost everywhere, where $f \in L^{1}((0,1))$. Show that

$$
\left\|f_{n}-f\right\|_{L^{1}((0,1))} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Problem 2. Set

$$
f(x, y)=e^{-x y} \sin x \sin y, \quad(x, y) \in(0, \infty) \times(0, \infty):=\mathbb{R}_{+} \times \mathbb{R}_{+}
$$

Show that $f \in L^{1}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right)$.
Problem 3. Let $f \in L^{1}(\mathbb{R})$ and set

$$
f_{h}(x)=\frac{1}{2 h} \int_{x-h}^{x+h} f(t) d t, \quad h>0
$$

Show that $f_{h} \in L^{1}(\mathbb{R})$ and $f_{h} \rightarrow f$ in $L^{1}(\mathbb{R})$ as $h \rightarrow 0$.
Problem 4. Let $f \in L^{1}(\mathbb{R})$. Show that the series

$$
\sum_{n=1}^{\infty} n \int_{n}^{n+1 / n} f(x+y) d y
$$

converges absolutely for a.a. $x \in \mathbb{R}$.
Problem 5. Let $f, g \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ and set

$$
F(x)=\int_{0}^{x} f(t) d t, \quad G(x)=\int_{0}^{x} g(t) d t
$$

Show that, if $a>0$,

$$
\int_{0}^{a} F(x) g(x) d x+\int_{0}^{a} f(x) G(x) d x=F(a) G(a)
$$

Problem 6. Let $f \in L^{1}(\mathbb{R})$ and let

$$
m(t)=\mu(\{x:|f(x)|>t\})
$$

Show that

$$
\int_{\mathbb{R}}|f(x)| d x=\int_{0}^{\infty} m(t) d t \geq \sum_{k=1}^{\infty} \varepsilon m(\varepsilon k), \quad \varepsilon>0
$$

Show also that

$$
\sum_{k=1}^{\infty} \varepsilon m(\varepsilon k) \rightarrow \int_{\mathbb{R}}|f(x)| d x
$$

as $\varepsilon \rightarrow 0^{+}$.
Problem 7. Let $f \in L^{1}(\mathbb{R})$ and let $g \in C(\mathbb{R})$ be continuous periodic with period T. Show that

$$
\int_{\mathbb{R}} f(x) g(n x) d x \rightarrow\left(\int_{\mathbb{R}} f(x) d x\right)\left(\frac{1}{T} \int_{0}^{T} g(y) d y\right)
$$

as $n \rightarrow \infty$.
Hint: Assume first that $f \in C_{0}(\mathbb{R})$.

