Homework 6 (Due Saturday, February 24, 2024, 11:59 Pm)
Problem 1. Show that for $1 \leq p \neq q \leq \infty, L^{p}\left(\mathbb{R}^{d}\right)$ is not contained in $L^{q}\left(\mathbb{R}^{d}\right)$.
Problem 2. Show that if $f \in L^{p}(\mathbb{R}) \cap L^{q}(\mathbb{R}), 1 \leq p<q \leq \infty$, then $f \in L^{r}(\mathbb{R})$ for $r \in[p, q]$, and show that

$$
\|f\|_{L^{r}(\mathbb{R})} \leq\|f\|_{L^{p}(\mathbb{R})}^{\lambda}\|f\|_{L^{q}(\mathbb{R})}^{1-\lambda}, \quad \frac{1}{r}=\frac{\lambda}{p}+\frac{1-\lambda}{q}, \quad \lambda \in[0,1] .
$$

Problem 3. Let $f_{n} \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leq p<\infty$, and assume that $f_{n}(x) \rightarrow f(x)$ for almost all x and that $\left\|f_{n}\right\|_{L^{p}} \rightarrow\|f\|_{L^{p}}<\infty, n \rightarrow \infty$. Show that

$$
\left\|f-f_{n}\right\|_{L^{p}} \rightarrow 0, \quad n \rightarrow \infty
$$

Problem 4. Let $f_{j} \in L^{p_{j}}\left(\mathbb{R}^{d}\right), j=1, \ldots, n$, where $p_{j} \in[1, \infty]$ and

$$
\sum_{j=1}^{n} \frac{1}{p_{j}}=\frac{1}{q}
$$

with $q \in[1, \infty]$. Show that $f_{1} \ldots f_{n} \in L^{q}\left(\mathbb{R}^{d}\right)$ and

$$
\left\|f_{1} \ldots f_{n}\right\|_{L^{q}} \leq \Pi_{j=1}^{n}\left\|f_{j}\right\|_{L^{p_{j}}} .
$$

Problem 5. Let $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$. Compute the limits

$$
\lim _{h \rightarrow 0} \int|f(x+h)-f(x)|^{p} d x
$$

and

$$
\lim _{h \rightarrow \infty} \int|f(x+h)-f(x)|^{p} d x
$$

Problem 6. Let $f \in L^{p}\left(\mathbb{R}^{d}\right), g \in L^{q}\left(\mathbb{R}^{d}\right), 1 \leq p, q \leq \infty$ with

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Show that

$$
x \mapsto \int f(x-y) g(y) d y
$$

is a continuous function.
Problem 7. Let $f \in L_{l o c}^{2}(\mathbb{R})$ and $g \in L_{l o c}^{3}(\mathbb{R})$. Let a, b be real numbers such that

$$
\begin{gathered}
3 a+2 b+1<0 \\
1
\end{gathered}
$$

Assume that for all real $r \geq 1$, we have

$$
\int_{r \leq|x| \leq 2 r}|f(x)|^{2} d x \leq r^{a} \quad \text { and } \quad \int_{r \leq|x| \leq 2 r}|g(x)|^{3} d x \leq r^{b}
$$

Show that $f g \in L^{1}(\mathbb{R})$.

