Homework 6 Solutions

Remark: Some of the proofs are sketched, but you should be able to recover all the details with just a
little bit more work.

1. We first consider when p # oo and ¢ = co. Take

— o for z € B:(0)\ {0}
flx) =< l=1Z27 7
0 otherwise.

Using polar coordinatesﬂ we find

1 1
/ \f(:c)|pd:c:C(n)/ pmrmdtlpd—l dr:C’(d)/ rT2dr < oo
Rd 0

0

so f € LY(RY). Since f ¢ L>(R%), this concludes this case. On the other hand, constant functions are
L> but not L' on R9.

Suppose now that 1 < p < ¢ < oo and choose a > 1 such that ap < ¢. Then arguing as above we find

1 d—1

g(x) = 2|75~ 7 x((@) € L(RY)

q _g(d-1)

since |g(x)|P = |x\_%_d+1xgl(0)\{0}(x) and a~! < 1. However, |g(z)|? = |z| a» " » X B, (0)\{0} () s0
g ¢ LY(RY) since o >1and @ — (d —1) > 0. An analogous argument shows

d—1

h(z)=|z| s @ “ XR\B, (0) (%) € LY(RY)
but h ¢ LP(R?).
2. First, note that
1 A 1-=2A Aar (1=X\)r

=ttt —Cel="¢
TP q p q

Suppose first that A € (0,1). If ¢ = oo, then the expression above gives p = Ar. Then

([1srras)” = ([P a)” < s (/le(xwdx)*’:
Suppose now that ¢ < co. By Hélder’s inequality
/\f |d:v /‘f L @)V d )
< (A\f(m)|pdx)7(4\f(x)|q d:c) e

Taking the r-th root gives the result. The desired result is immediate if either A = 1 or A = 0, since
p =1 and ¢ = r in the second case.

1If you are uncomfortable with working in polar coordinates in high dimensions, take a look at Section 2.7 in Folland.



3. We will show that || f — f,||¥, — 0 as n — co. Note that

f = Fal? < (2max(|f], [£u])” < 2P(F1P + | ful?)-

Then |f — f,|P — 0 pointwise a.e. with
|f = ful? < 279 where g, == 2°(|f[P + | fu]”).

Since g, — 2|| f||}» in L' by assumption, we may apply the generalized dominated convergence theorem
to conclude ||f — fu|l5, =0

4. We first assume p; € (1,00) for each j =1,...,n. We have:
> - Z =
We proceed by induction. When n = 2, by Holder’s inequality

[n@n@ids < ([ 15wk a)™ ([ n@e )

Taking the ¢-th root on each side of the inequality above gives

||f1f2HLq(Rd) < Hf1||Lm(Rd)||f2HLp2(Rd)~

Suppose now that the desired conclusion holds for some n € N. By Hélder’s inequality

/|f1 (@) frga (@) d < /|f1 |7’ dx /|f”+1 )Pt d )Pw+1

where .
1 1
r ,;2 pk.
Then q q
+ - - 1
Pn+1 T

so we may apply the n = 2 case to the first term in the product on the right-hand side to conclude

<I —aq
([ @) su@l do) ([ Vi@ de) ™ < I Al ey

This completes the proof when p; € (1,00). If p; = 1 for any j, then we must have p; = oo for each
k # j and ¢ = 1. Then

L@ £l < Ty ull ey 1 s e

Suppose now that pp = oo for k=j+1,...,n. Then
[ 1A@- Fa@de < Tyl Al [ (o) ) o
Since _
Y
k=

we can apply the first case to the second term in the product above to conclude the proof.



5. First, we show

lim |f(z+h)— f(x)|Pdx = 0.
h—0 Jrn

Suppose that f € Co(R™). Then
lim [£(x + 1) — f(@) =0.

Let K be the support of f. Then there is a d9 > 0 and a compact set K such that for all |h| < & the
support of f(x + h) is contained in K. Since f € Co(R™), we know || f|| ., < oo. Hence,

[+ h) — F@P < 22 fIxz (@) for cach = € R™.

o0

Since the right-hand side of the inequality is in L', we may apply the dominated convergence theorem
to conclude

lim |f(z+h)— f(x)|]P dx =0 when f € Co(R"™).
h—0 Rn

Suppose now that f € LP(R™) and choose ¢ € Co(R™) with || f — ¢||}, < 4 Pe. Then
[ it n - e as <o [
+ [ jota) - f@) do

Rn

[z +h) — é(z + h)P da + 4?/ 6(z + h) — ¢(z)|P do

n n

<2+ 4”/ |o(x + h) — ()P dx.
Taking the limit as h — 0 and using the first part shows

lim |f(z+h)— f(2)|Pdx < 2e.
h—0 Rn

Since € > 0, the claim is proved.

‘We now show that

i [ |fah) = f@Pde=2 [ )P

\h|—>oo R n

We first suppose f = Xp, (z,) for some zp € R" and some r > 0. Then there is an a > 0 such that
|h| > « implies B,(xo — h) N By(xg) = . Then for all such h we have:

[ 1) = f@Pde = [ @) X @F do

- / X8, (0t (@)IP dz + / X5, (o (@) P dt
:2m(BT($0))

=2 [ Ixn, (@) do
2 [ Ve

This proves the claim for characteristic functions of open balls. By linearity, we can extend the result
to simple functions of the form

k
HOED IPPRMIC)

Arguing as in the first part, we can then extend the result to arbitrary f € LP(R™) by approximating
with simple functions of the above form.



6. Set
h(x) = y flz—y)g(y) dy

and fix zo € R? and suppose x,, — xo. Then
) = hGao) = | [ (=) = fan =)o) o
/ fl f(@o - 9)llg(w)] dy

/|f ~ ftao -l dy) ([ lowitds)’

The second term in the product is finite by assumption and by Problem 5 the first term in the product
tends to zero as n — oo. Hence,

|h(zn) — h(xo)] = 0 as n — oo.
Since xzq is arbitrary and {x,} is an arbitrary sequence converging to xg, h is a continuous function.

7. By symmetry of the argument, it suffices to show fg € L'((0,00)). Since 3 + 1+ % = 1, we may apply
Problem 4 to obtain

/[0,1] I @)llgle)l de < </[0’1} |f(x)|2dx)§ (/[0,1] lg(x)? dI>§ </[0,1} dx)g < 00. (1)

Using , we find that for r > 1

/[T’QT] ‘f(x)Hg(x” = </[r,2r] |f(x)‘2 dz) § </[r,2r] |g(x)‘3 dz) g ( /[T,ZT] dl’) '

a b 1
r2 .r3 .r6
Ba+2b+1

6 .

IA

r
Next, notice that

/Ooo|f(x)g(:c)|dx=/1|f(x) \dx+/ f(x |d:c+/ |f(2)g(z)| dz + - -

2n+1

/ F@g@)]de 3 [ 1s@g) do

/0 T @)g)l e < i | f@)g(a)|du+ > (27) 755

n=0

= | If(@)g(x)|de+ > (27F)", (2)
n=0

where the second term in the sum on the right-hand side is finite since it is a convergent geometric
sum. Also, the generalized Holder inequality gives

[ nar < ([ 1rwra)’ ([ lep ) <o ®

Combining 7 , and completes the proof.



