
Homework 6 Solutions

Remark: Some of the proofs are sketched, but you should be able to recover all the details with just a
little bit more work.

1. We first consider when p ̸= ∞ and q = ∞. Take

f(x) :=


1

|x|
1
2p

+ d−1
p

for x ∈ B1(0) \ {0}

0 otherwise.

Using polar coordinates,1 we find∫
Rd

|f(x)|p dx = C(n)

∫ 1

0

r−
1
2−d+1rd−1 dr = C(d)

∫ 1

0

r−
1
2 dr < ∞

so f ∈ L1(Rd). Since f /∈ L∞(Rd), this concludes this case. On the other hand, constant functions are
L∞ but not L1 on Rd.

Suppose now that 1 ≤ p < q < ∞ and choose a > 1 such that ap < q. Then arguing as above we find

g(x) := |x|−
1
ap−

d−1
p · χ(0,1](x) ∈ Lp(Rd)

since |g(x)|p = |x|− 1
a−d+1χB1(0)\{0}(x) and a−1 < 1. However, |g(x)|q = |x|−

q
ap−

q(d−1)
p χB1(0)\{0}(x) so

g /∈ Lq(Rd) since q
ap > 1 and q(d−1)

p − (d− 1) > 0. An analogous argument shows

h(x) = |x|−
a
q −

d−1
q · χRd\B1(0)(x) ∈ Lq(Rd)

but h /∈ Lp(Rd).

2. First, note that
1

r
=

λ

p
+

1− λ

q
⇔ 1 =

λr

p
+

(1− λ)r

q
.

Suppose first that λ ∈ (0, 1). If q = ∞, then the expression above gives p = λr. Then(∫
R
|f(x)|r dx

) 1
r

=
(∫

R
|f(x)|λr|f(x)|(1−λ)r dx

) 1
r ≤ ∥f∥(1−λ)

L∞

(∫
R
|f(x)|λr dx

) λ
λr

.

Suppose now that q < ∞. By Hölder’s inequality(∫
R
|f(x)|r dx

) 1
r

=
(∫

R
|f(x)|λr|f(x)|(1−λ)r dx

) 1
r

≤
(∫

R
|f(x)|p dx

)λr
p
(∫

R
|f(x)|q dx

) (1−λ)r
q

.

Taking the r-th root gives the result. The desired result is immediate if either λ = 1 or λ = 0, since
p = r and q = r in the second case.

1If you are uncomfortable with working in polar coordinates in high dimensions, take a look at Section 2.7 in Folland.
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3. We will show that ∥f − fn∥pLp → 0 as n → ∞. Note that

|f − fn|p ≤
(
2max(|f |, |fn|)

)p ≤ 2p(|f |p + |fn|p).

Then |f − fn|p → 0 pointwise a.e. with

|f − fn|p ≤ 2pgn where gn := 2p(|f |p + |fn|p).

Since gn → 2∥f∥pLp in L1 by assumption, we may apply the generalized dominated convergence theorem
to conclude ∥f − fn∥pLp → 0.

4. We first assume pj ∈ (1,∞) for each j = 1, . . . , n. We have:

n∑
j=1

1

pj
=

1

q
⇔

n∑
j=1

q

pj
= 1.

We proceed by induction. When n = 2, by Hölder’s inequality∫
Rd

|f1(x)f2(x)|q dx ≤
(∫

Rd

|f1(x)|p1 dx
) q

p1
(∫

Rd

|f2(x)|p2 dx
) q

p2
.

Taking the q-th root on each side of the inequality above gives

∥f1f2∥Lq(Rd) ≤ ∥f1∥Lp1 (Rd)∥f2∥Lp2 (Rd).

Suppose now that the desired conclusion holds for some n ∈ N. By Hölder’s inequality∫
Rd

|f1(x) · · · fn(x)fn+1(x)|q dx ≤
(∫

Rd

|f1(x) · · · fn(x)|r
′
dx

) q
r′
(∫

Rd

|fn+1(x)|pn+1 dx
) q

pn+1
,

where
1

r′
=

n∑
k=2

1

pk
.

Then
q

pn+1
+

q

r′
= 1

so we may apply the n = 2 case to the first term in the product on the right-hand side to conclude(∫
Rd

|f1(x) · · · fn(x)|r
′
dx

) q
r′
(∫

Rd

|fn+1(x)|pn+1 dx
) q

pn+1 ≤ Πn+1
k=1∥fk∥Lpk (Rd).

This completes the proof when pj ∈ (1,∞). If pj = 1 for any j, then we must have pk = ∞ for each
k ̸= j and q = 1. Then ∫

Rd

|f1(x) · · · fn(x)| dx ≤ Πk ̸=j∥fk∥L∞(Rd)∥fj∥L1(Rd).

Suppose now that pk = ∞ for k = j + 1, . . . , n. Then∫
Rd

|f1(x) · · · fn(x)|q dx ≤ Πn
k=j+1∥fk∥

q
L∞(Rd)

∫
Rd

|f1(x) · · · fj(x)|q dx.

Since

1

q
=

j∑
k=1

1

pk
,

we can apply the first case to the second term in the product above to conclude the proof.
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5. First, we show

lim
h→0

∫
Rn

|f(x+ h)− f(x)|p dx = 0.

Suppose that f ∈ C0(Rn). Then
lim
h→0

|f(x+ h)− f(x)|p = 0.

Let K be the support of f . Then there is a δ0 > 0 and a compact set K̃ such that for all |h| < δ the
support of f(x+ h) is contained in K̃. Since f ∈ C0(Rn), we know ∥f∥∞ < ∞. Hence,

|f(x+ h)− f(x)|p ≤ 2p∥f∥p∞χK̃(x) for each x ∈ Rn.

Since the right-hand side of the inequality is in L1, we may apply the dominated convergence theorem
to conclude

lim
h→0

∫
Rn

|f(x+ h)− f(x)|p dx = 0 when f ∈ C0(Rn).

Suppose now that f ∈ Lp(Rn) and choose ϕ ∈ C0(Rn) with ∥f − ϕ∥pLp < 4−pϵ. Then∫
Rn

|f(x+ h)− f(x)|p dx ≤4p
∫
Rn

|f(x+ h)− ϕ(x+ h)|p dx+ 4p
∫
Rn

|ϕ(x+ h)− ϕ(x)|p dx

+ 4p
∫
Rn

|ϕ(x)− f(x)|p dx

≤ 2ϵ+ 4p
∫
Rn

|ϕ(x+ h)− ϕ(x)|p dx.

Taking the limit as h → 0 and using the first part shows

lim
h→0

∫
Rn

|f(x+ h)− f(x)|p dx ≤ 2ϵ.

Since ϵ > 0, the claim is proved.

We now show that

lim
|h|→∞

∫
Rn

|f(x+ h)− f(x)|p dx = 2

∫
Rn

|f(x)|p dx.

We first suppose f = χBr(x0) for some x0 ∈ Rn and some r > 0. Then there is an α > 0 such that
|h| > α implies Br(x0 − h) ∩Br(x0) = ∅. Then for all such h we have:∫

Rn

|f(x+ h)− f(x)|p dx =

∫
Rn

|χBr(x0−h)(x)− χBr(x0)(x)|
p dx

=

∫
Rn

|χBr(x0−h)(x)|p dx+

∫
Rn

|χBr(x0)(x)|
p dx

= 2m(Br(x0))

= 2

∫
Rn

|χBr(x0)(x)|
p dx

= 2

∫
Rn

|f(x)|p dx.

This proves the claim for characteristic functions of open balls. By linearity, we can extend the result
to simple functions of the form

f(x) =

k∑
i=1

χBri
(xi)(x).

Arguing as in the first part, we can then extend the result to arbitrary f ∈ Lp(Rn) by approximating
with simple functions of the above form.
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6. Set

h(x) :=

∫
Rd

f(x− y)g(y) dy

and fix x0 ∈ Rd and suppose xn → x0. Then

|h(xn)− h(x0)| =
∣∣∣ ∫

Rd

(f(xn − y)− f(x0 − y))g(y) dy
∣∣∣

≤
∫
Rd

|f(xn − y)− f(x0 − y)||g(y)| dy

≤
(∫

Rd

|f(xn − y)− f(x0 − y)|p dy
) 1

p
(∫

Rd

|g(y)|q dy
) 1

q

.

The second term in the product is finite by assumption and by Problem 5 the first term in the product
tends to zero as n → ∞. Hence,

|h(xn)− h(x0)| → 0 as n → ∞.

Since x0 is arbitrary and {xn} is an arbitrary sequence converging to x0, h is a continuous function.

7. By symmetry of the argument, it suffices to show fg ∈ L1((0,∞)). Since 1
2 +

1
3 +

1
6 = 1, we may apply

Problem 4 to obtain∫
[0,1]

|f(x)||g(x)| dx ≤
(∫

[0,1]

|f(x)|2 dx
) 1

2
(∫

[0,1]

|g(x)|3 dx
) 1

3
(∫

[0,1]

dx
) 1

6

< ∞. (1)

Using (1), we find that for r ≥ 1∫
[r,2r]

|f(x)||g(x)| dx ≤
(∫

[r,2r]

|f(x)|2 dx
) 1

2
(∫

[r,2r]

|g(x)|3 dx
) 1

3
(∫

[r,2r]

dx
) 1

6

≤ r
a
2 · r b

3 · r 1
6

= r
3a+2b+1

6 .

Next, notice that∫ ∞

0

|f(x)g(x)| dx =

∫ 1

0

|f(x)g(x)| dx+

∫ 2

1

|f(x)g(x)| dx+

∫ 4

2

|f(x)g(x)| dx+ · · ·

=

∫ 1

0

|f(x)g(x)| dx+

∞∑
n=0

∫ 2n+1

2n
|f(x)g(x)| dx.

Combining the two previous estimates gives:∫ ∞

0

|f(x)g(x)| dx ≤
∫ 1

0

|f(x)g(x)| dx+

∞∑
n=0

(2n)
3a+2b+1

6

=

∫ 1

0

|f(x)g(x)| dx+

∞∑
n=0

(2
3a+2b+1

6 )n, (2)

where the second term in the sum on the right-hand side is finite since it is a convergent geometric
sum. Also, the generalized Hölder inequality gives∫ 1

0

|f(x)g(x)| dx ≤
(∫ 1

0

|f(x)|2 dx
) 1

2
(∫ 1

0

|g(x)|3 dx
) 1

3

< ∞. (3)

Combining (1), (2), and (3) completes the proof.
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