Homework 6 Solutions

Remark: Some of the proofs are sketched, but you should be able to recover all the details with just a little bit more work.

1. We first consider when $p \neq \infty$ and $q = \infty$. Take

$$f(x) := \begin{cases} \frac{1}{|x|^{\frac{1}{2p} + \frac{d-1}{p}}} \text{ for } x \in B_1(0) \setminus \{0\}\\ 0 \text{ otherwise.} \end{cases}$$

Using polar coordinates,¹ we find

$$\int_{\mathbb{R}^d} |f(x)|^p \, dx = C(n) \int_0^1 r^{-\frac{1}{2}-d+1} r^{d-1} \, dr = C(d) \int_0^1 r^{-\frac{1}{2}} \, dr < \infty$$

so $f \in L^1(\mathbb{R}^d)$. Since $f \notin L^{\infty}(\mathbb{R}^d)$, this concludes this case. On the other hand, constant functions are L^{∞} but not L^1 on \mathbb{R}^d .

Suppose now that $1 \le p < q < \infty$ and choose a > 1 such that ap < q. Then arguing as above we find

$$g(x) := |x|^{-\frac{1}{ap} - \frac{d-1}{p}} \cdot \chi_{(0,1]}(x) \in L^p(\mathbb{R}^d)$$

since $|g(x)|^p = |x|^{-\frac{1}{a}-d+1}\chi_{B_1(0)\setminus\{0\}}(x)$ and $a^{-1} < 1$. However, $|g(x)|^q = |x|^{-\frac{q}{ap} - \frac{q(d-1)}{p}}\chi_{B_1(0)\setminus\{0\}}(x)$ so $g \notin L^q(\mathbb{R}^d)$ since $\frac{q}{ap} > 1$ and $\frac{q(d-1)}{p} - (d-1) > 0$. An analogous argument shows

$$h(x) = |x|^{-\frac{a}{q} - \frac{d-1}{q}} \cdot \chi_{\mathbb{R}^d \setminus B_1(0)}(x) \in L^q(\mathbb{R}^d)$$

but $h \notin L^p(\mathbb{R}^d)$.

2. First, note that

$$\frac{1}{r} = \frac{\lambda}{p} + \frac{1-\lambda}{q} \Leftrightarrow 1 = \frac{\lambda r}{p} + \frac{(1-\lambda)r}{q}$$

Suppose first that $\lambda \in (0, 1)$. If $q = \infty$, then the expression above gives $p = \lambda r$. Then

$$\left(\int_{\mathbb{R}} |f(x)|^r \, dx\right)^{\frac{1}{r}} = \left(\int_{\mathbb{R}} |f(x)|^{\lambda r} |f(x)|^{(1-\lambda)r} \, dx\right)^{\frac{1}{r}} \le \|f\|_{L^{\infty}}^{(1-\lambda)} \left(\int_{\mathbb{R}} |f(x)|^{\lambda r} \, dx\right)^{\frac{\lambda}{\lambda r}}.$$

Suppose now that $q < \infty$. By Hölder's inequality

$$\left(\int_{\mathbb{R}} |f(x)|^r dx\right)^{\frac{1}{r}} = \left(\int_{\mathbb{R}} |f(x)|^{\lambda r} |f(x)|^{(1-\lambda)r} dx\right)^{\frac{1}{r}}$$
$$\leq \left(\int_{\mathbb{R}} |f(x)|^p dx\right)^{\frac{\lambda r}{p}} \left(\int_{\mathbb{R}} |f(x)|^q dx\right)^{\frac{(1-\lambda)r}{q}}.$$

Taking the r-th root gives the result. The desired result is immediate if either $\lambda = 1$ or $\lambda = 0$, since p = r and q = r in the second case.

¹If you are uncomfortable with working in polar coordinates in high dimensions, take a look at Section 2.7 in Folland.

3. We will show that $||f - f_n||_{L^p}^p \to 0$ as $n \to \infty$. Note that

$$|f - f_n|^p \le (2 \max(|f|, |f_n|))^p \le 2^p (|f|^p + |f_n|^p)$$

Then $|f - f_n|^p \to 0$ pointwise a.e. with

$$|f - f_n|^p \le 2^p g_n$$
 where $g_n := 2^p (|f|^p + |f_n|^p)$.

Since $g_n \to 2 \|f\|_{L^p}^p$ in L^1 by assumption, we may apply the generalized dominated convergence theorem to conclude $\|f - f_n\|_{L^p}^p \to 0$.

4. We first assume $p_j \in (1, \infty)$ for each $j = 1, \ldots, n$. We have:

$$\sum_{j=1}^{n} \frac{1}{p_j} = \frac{1}{q} \Leftrightarrow \sum_{j=1}^{n} \frac{q}{p_j} = 1.$$

We proceed by induction. When n = 2, by Hölder's inequality

$$\int_{\mathbb{R}^d} |f_1(x)f_2(x)|^q \, dx \le \left(\int_{\mathbb{R}^d} |f_1(x)|^{p_1} \, dx\right)^{\frac{q}{p_1}} \left(\int_{\mathbb{R}^d} |f_2(x)|^{p_2} \, dx\right)^{\frac{q}{p_2}}.$$

Taking the q-th root on each side of the inequality above gives

 $\|f_1 f_2\|_{L^q(\mathbb{R}^d)} \le \|f_1\|_{L^{p_1}(\mathbb{R}^d)} \|f_2\|_{L^{p_2}(\mathbb{R}^d)}.$

Suppose now that the desired conclusion holds for some $n \in \mathbb{N}$. By Hölder's inequality

$$\int_{\mathbb{R}^d} |f_1(x)\cdots f_n(x)f_{n+1}(x)|^q \, dx \le \left(\int_{\mathbb{R}^d} |f_1(x)\cdots f_n(x)|^{r'} \, dx\right)^{\frac{q}{r'}} \left(\int_{\mathbb{R}^d} |f_{n+1}(x)|^{p_{n+1}} \, dx\right)^{\frac{q}{p_{n+1}}} \, dx$$

where

$$\frac{1}{r'} = \sum_{k=2}^{n} \frac{1}{p_k}.$$

Then

$$\frac{q}{p_{n+1}} + \frac{q}{r'} = 1$$

so we may apply the n = 2 case to the first term in the product on the right-hand side to conclude

$$\left(\int_{\mathbb{R}^d} |f_1(x)\cdots f_n(x)|^{r'} dx\right)^{\frac{q}{r'}} \left(\int_{\mathbb{R}^d} |f_{n+1}(x)|^{p_{n+1}} dx\right)^{\frac{q}{p_{n+1}}} \le \prod_{k=1}^{n+1} ||f_k||_{L^{p_k}(\mathbb{R}^d)}.$$

This completes the proof when $p_j \in (1, \infty)$. If $p_j = 1$ for any j, then we must have $p_k = \infty$ for each $k \neq j$ and q = 1. Then

$$\int_{\mathbb{R}^d} |f_1(x) \cdots f_n(x)| \, dx \le \prod_{k \ne j} ||f_k||_{L^{\infty}(\mathbb{R}^d)} ||f_j||_{L^1(\mathbb{R}^d)}.$$

Suppose now that $p_k = \infty$ for k = j + 1, ..., n. Then

$$\int_{\mathbb{R}^d} |f_1(x)\cdots f_n(x)|^q \, dx \le \prod_{k=j+1}^n ||f_k||_{L^{\infty}(\mathbb{R}^d)}^q \int_{\mathbb{R}^d} |f_1(x)\cdots f_j(x)|^q \, dx$$

Since

$$\frac{1}{q} = \sum_{k=1}^{j} \frac{1}{p_k},$$

we can apply the first case to the second term in the product above to conclude the proof.

5. First, we show

$$\lim_{h \to 0} \int_{\mathbb{R}^n} |f(x+h) - f(x)|^p \, dx = 0$$

Suppose that $f \in C_0(\mathbb{R}^n)$. Then

$$\lim_{h \to 0} |f(x+h) - f(x)|^p = 0.$$

Let K be the support of f. Then there is a $\delta_0 > 0$ and a compact set \tilde{K} such that for all $|h| < \delta$ the support of f(x+h) is contained in \tilde{K} . Since $f \in C_0(\mathbb{R}^n)$, we know $||f||_{\infty} < \infty$. Hence,

$$|f(x+h) - f(x)|^p \le 2^p ||f||_{\infty}^p \chi_{\tilde{K}}(x) \text{ for each } x \in \mathbb{R}^n.$$

Since the right-hand side of the inequality is in L^1 , we may apply the dominated convergence theorem to conclude

$$\lim_{h \to 0} \int_{\mathbb{R}^n} |f(x+h) - f(x)|^p \, dx = 0 \text{ when } f \in C_0(\mathbb{R}^n).$$

Suppose now that $f \in L^p(\mathbb{R}^n)$ and choose $\phi \in C_0(\mathbb{R}^n)$ with $||f - \phi||_{L^p}^p < 4^{-p}\epsilon$. Then

$$\begin{split} \int_{\mathbb{R}^n} |f(x+h) - f(x)|^p \, dx &\leq 4^p \int_{\mathbb{R}^n} |f(x+h) - \phi(x+h)|^p \, dx + 4^p \int_{\mathbb{R}^n} |\phi(x+h) - \phi(x)|^p \, dx \\ &+ 4^p \int_{\mathbb{R}^n} |\phi(x) - f(x)|^p \, dx \\ &\leq 2\epsilon + 4^p \int_{\mathbb{R}^n} |\phi(x+h) - \phi(x)|^p \, dx. \end{split}$$

Taking the limit as $h \to 0$ and using the first part shows

$$\lim_{h \to 0} \int_{\mathbb{R}^n} |f(x+h) - f(x)|^p \, dx \le 2\epsilon.$$

Since $\epsilon > 0$, the claim is proved.

We now show that

$$\lim_{|h| \to \infty} \int_{\mathbb{R}^n} |f(x+h) - f(x)|^p \, dx = 2 \int_{\mathbb{R}^n} |f(x)|^p \, dx.$$

We first suppose $f = \chi_{B_r(x_0)}$ for some $x_0 \in \mathbb{R}^n$ and some r > 0. Then there is an $\alpha > 0$ such that $|h| > \alpha$ implies $B_r(x_0 - h) \cap B_r(x_0) = \emptyset$. Then for all such h we have:

$$\begin{split} \int_{\mathbb{R}^n} |f(x+h) - f(x)|^p \, dx &= \int_{\mathbb{R}^n} |\chi_{B_r(x_0-h)}(x) - \chi_{B_r(x_0)}(x)|^p \, dx \\ &= \int_{\mathbb{R}^n} |\chi_{B_r(x_0-h)}(x)|^p \, dx + \int_{\mathbb{R}^n} |\chi_{B_r(x_0)}(x)|^p \, dx \\ &= 2m(B_r(x_0)) \\ &= 2\int_{\mathbb{R}^n} |\chi_{B_r(x_0)}(x)|^p \, dx \\ &= 2\int_{\mathbb{R}^n} |f(x)|^p \, dx. \end{split}$$

This proves the claim for characteristic functions of open balls. By linearity, we can extend the result to simple functions of the form

$$f(x) = \sum_{i=1}^{k} \chi_{B_{r_i}(x_i)}(x).$$

Arguing as in the first part, we can then extend the result to arbitrary $f \in L^p(\mathbb{R}^n)$ by approximating with simple functions of the above form.

6. Set

$$h(x) := \int_{\mathbb{R}^d} f(x - y)g(y) \, dy$$

1

and fix $x_0 \in \mathbb{R}^d$ and suppose $x_n \to x_0$. Then

$$\begin{aligned} |h(x_n) - h(x_0)| &= \left| \int_{\mathbb{R}^d} (f(x_n - y) - f(x_0 - y))g(y) \, dy \right| \\ &\leq \int_{\mathbb{R}^d} |f(x_n - y) - f(x_0 - y)||g(y)| \, dy \\ &\leq \left(\int_{\mathbb{R}^d} |f(x_n - y) - f(x_0 - y)|^p \, dy \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^d} |g(y)|^q \, dy \right)^{\frac{1}{q}} \end{aligned}$$

The second term in the product is finite by assumption and by Problem 5 the first term in the product tends to zero as $n \to \infty$. Hence,

$$|h(x_n) - h(x_0)| \to 0 \text{ as } n \to \infty.$$

Since x_0 is arbitrary and $\{x_n\}$ is an arbitrary sequence converging to x_0 , h is a continuous function.

7. By symmetry of the argument, it suffices to show $fg \in L^1((0,\infty))$. Since $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$, we may apply Problem 4 to obtain

$$\int_{[0,1]} |f(x)| |g(x)| \, dx \le \Big(\int_{[0,1]} |f(x)|^2 \, dx \Big)^{\frac{1}{2}} \Big(\int_{[0,1]} |g(x)|^3 \, dx \Big)^{\frac{1}{3}} \Big(\int_{[0,1]} \, dx \Big)^{\frac{1}{6}} < \infty.$$
(1)

Using (1), we find that for $r \ge 1$

$$\begin{split} \int_{[r,2r]} |f(x)| |g(x)| \, dx &\leq \Big(\int_{[r,2r]} |f(x)|^2 \, dx \Big)^{\frac{1}{2}} \Big(\int_{[r,2r]} |g(x)|^3 \, dx \Big)^{\frac{1}{3}} \Big(\int_{[r,2r]} \, dx \Big)^{\frac{1}{6}} \\ &\leq r^{\frac{\alpha}{2}} \cdot r^{\frac{b}{3}} \cdot r^{\frac{1}{6}} \\ &= r^{\frac{3a+2b+1}{6}}. \end{split}$$

Next, notice that

$$\int_0^\infty |f(x)g(x)| \, dx = \int_0^1 |f(x)g(x)| \, dx + \int_1^2 |f(x)g(x)| \, dx + \int_2^4 |f(x)g(x)| \, dx + \cdots$$
$$= \int_0^1 |f(x)g(x)| \, dx + \sum_{n=0}^\infty \int_{2^n}^{2^{n+1}} |f(x)g(x)| \, dx.$$

Combining the two previous estimates gives:

$$\int_{0}^{\infty} |f(x)g(x)| \, dx \le \int_{0}^{1} |f(x)g(x)| \, dx + \sum_{n=0}^{\infty} (2^{n})^{\frac{3a+2b+1}{6}} = \int_{0}^{1} |f(x)g(x)| \, dx + \sum_{n=0}^{\infty} (2^{\frac{3a+2b+1}{6}})^{n}, \tag{2}$$

where the second term in the sum on the right-hand side is finite since it is a convergent geometric sum. Also, the generalized Hölder inequality gives

$$\int_{0}^{1} |f(x)g(x)| \, dx \le \left(\int_{0}^{1} |f(x)|^2 \, dx\right)^{\frac{1}{2}} \left(\int_{0}^{1} |g(x)|^3 \, dx\right)^{\frac{1}{3}} < \infty.$$
(3)

Combining (1), (2), and (3) completes the proof.