Problem 1. Let $f$ be a locally integrable function in $\mathbb{R}$ such that for some constant $A$ one has

$$
\int_{I} f(x) d x=A
$$

for all intervals $I$ of length 1 . Prove that $f(x+1)=f(x)$ for almost all $x$.
Problem 2. Show that the function

$$
f(x)=\frac{1}{\log (2+|x|)}, \quad x \in \mathbb{R}
$$

can not be written as a sum of finitely many functions in $\bigcup_{1 \leq p<\infty} L^{p}(\mathbb{R})$.
Problem 3. Let $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a Lebesgue measurable bounded function vanishing outside a compact set. Define $g_{\delta}(x)=\delta^{-n} g(x / \delta)$, $\delta>0$. Show that

$$
\lim _{\delta \rightarrow 0} \int f(x-y) g_{\delta}(y) d y=f(x) \int g(y) d y
$$

for almost all $x \in \mathbb{R}^{n}$.
Problem 4. Let $f \in L_{\text {loc }}^{1}(\mathbb{R})$. Assume that for each integer $n>0$, we have

$$
f\left(x+\frac{1}{n}\right) \geq f(x)
$$

for a.a. $x \in \mathbb{R}$. Show that for each real $a \geq 0$, we have

$$
f(x+a) \geq f(x)
$$

for a.a. $x \in \mathbb{R}$.
Hint: Consider the function

$$
f_{s}(x)=\int_{x}^{x+s} f(y) d y, \quad s>0
$$

Problem 5. Let $E$ be a measurable subset of $[0,1]$ such that

$$
m\left(E \cap\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right]\right)=\frac{m(E)}{2^{n}}
$$

for $k=1,2, \ldots, 2^{n}$ and for all $n=1,2, \ldots$. Show that $m(E)=0$ or $m(E)=1$.
Hint: Use the Lebesgue differentiation theorem.
Problem 6. Consider the 3D Weierstrass kernel

$$
K_{t}(x)=(4 \pi t)^{-3 / 2} e^{-|x|^{2} /(4 t)}, \quad t>0
$$

where $|x|$ denotes the Euclidean norm of $x \in \mathbb{R}^{3}$. Prove that, if $f \in L^{3}\left(\mathbb{R}^{3}\right)$, then $t^{1 / 2}\left\|K_{t} * f\right\|_{L^{\infty}} \rightarrow 0$ as $t \rightarrow 0$. Here,

$$
K_{t} * f(x)=\int_{\mathbb{R}^{3}} K_{t}(x-y) f(y) d y
$$

is the convolution.

