
Homework 7 Solutions

1. Set

F (x) :=

∫ x+1

x

f(t) dt =

∫ x+1

0

f(t) dt−
∫ x

0

f(t) dt.

Then F (x) ≡ A, so by the Lebesgue Differentiation Theorem1 F is differentiable almost everywhere
and

F ′(x) = f(x+ 1)− f(x) = 0 for a.e. x ∈ R.

2. The proof is by contradiction. Suppose that

f(x) =

n∑
j=1

gj(x) for some gj ∈ Lpj and each 1 ≤ pj < ∞.

Set Et := {x : f(x) > t} for t > 0. By the Chebyshev inequality, we have

m(Et) ≤
n∑

j=1

m
({

x : gj(x) >
t

n

})
≤

n∑
j=1

npj

tpj
∥gj∥

pj

Lpj

≤
n∑

j=1

Cj

tpj
,

where Cj := npj∥gj∥
pj

Lpj . We note that the quantity on the right hand side is a polynomial in y(t) := 1
t .

On the other hand, by the definition of f

f(x) > t > 0 ⇔ |x| < e
1
t − 2

implying
m(Et) = 2(e

1
t − 2) = 2(ey − 2).

In particular,

2(ey − 2) ≤
n∑

j=1

Cjy
pj

for all y > 0, which cannot be since a polynomial cannot bound an exponential for y large. It follows
that f cannot be written as a sum of finitely many functions in ∪1≤p<∞Lp(R).

3. We have ∫
Rn

f(x− y)gδ(y) dy =

∫
Rn

f(x− y)δ−ng(δ−1y) dy.

Making the change in variables z(y) = δ−1y. Then Dz(y) = (δ−1δij)
n
i,j=1 so

detDz(y) = δ−n,

1See my notes on the Lebesgue Differentiation Theorem. In short, the Lebesgue Differentiation implies the usual FTC
assuming the integrand is only L1 locally.
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and the change of variable formula gives∫
Rn

f(x− y)gδ(y) dy =

∫
z−1(Rn)

f(x− δz)g(z) dz

=

∫
Rn

f(x− δz)g(z) dz.

Notice that ∣∣∣ ∫
Rn

(f(x− δz)− f(x))g(z) dz
∣∣∣ ≤ ∥g∥L∞(Rn)

∫
supp g

|f(x− δz)− f(x)| dz.

Thus, using the usual approximation argument by continuous functions with compact support, it is
not hard to show that the integral on the right hand side tends to zero in L1 for any locally integrable
f .

4. Fix a ≥ 0. Then for each n ∈ N there is a kn such that

kn − 1

n
≤ a ≤ kn

n
.

Set

fs(x) :=

∫ x+s

x

f(y) dy =

∫ x+s

0

f(y) dy −
∫ x

0

f(y) dy for s > 0.

Setting s = 1
n and applying the Lebesgue Differentiation Theorem, we find

f ′
1
n
(x) = f

(
x+

1

n

)
− f(x) ≥ 0 for a.e. x ∈ R.

It follows that

f 1
n

(
x+

kn − 1

n

)
≥ f 1

n
(x)

so that

n

∫ x+ kn
n

x+ kn−1
n

f(t) dt ≥ n

∫ x+ 1
n

x

f(t) dt.

Since the sets [
x+

kn − 1

n
, x+

kn
n

]
and

[
x, x+

1

n

]
shrink nicely to x + a and x, respectively, we can apply the Lebesgue Differentiation Theorem once
more to conclude that for every a ≥ 0 and a.e. x ∈ R we have

f(x+ a) ≥ f(x) for a.e. x.

5. Let E ⊂ [0, 1] be measurable and fix x ∈ [0, 1]. Note that, for each n ∈ N, there is a kn ∈ {1, . . . , 2n}
such that x ∈ [kn−1

2n , kn

2n ]. In addition, the sets [kn−1
2n , kn

2n ] shrink nicely to x and

2nm
(
E ∩

[kn − 1

2n
,
kn
2n

])
= 2n

∫ kn
2n

kn−1
2n

χE(t) dt.

By the Lebesgue Differentiation Theorem, for almost all x ∈ [0, 1]

lim
n→∞

2nm
(
E ∩

[kn − 1

2n
,
kn
2n

])
= χE(x) ∈ {0, 1}.

Since the left-hand side of the expression above is equal to m(E), we are done.
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6. We first prove the result when f ∈ C0(R3). Set

z(y) :=
x− y

t
1
2

.

Then detDz(y) = −t−
3
2 dy. Thus,

t
1
2 ∥Kt ∗ f∥L∞ ≤ t

1
2

∣∣∣ ∫
R3

(4πt)−
3
2 e−

|x−y|2
4t f(y) dy

∣∣∣
= t

1
2

∣∣∣ ∫
R3

(4π)−
3
2 e−

|z|2
4 f

(
x− t

1
2 z

)
dz

∣∣∣
≤ (4π)−

3
2 ∥f∥L∞t

1
2

∫
R3

e−
|z|2
4 dz

→ 0 as t → 0

where we have applied the change of variable formula in the second line. It follows that the desired
result holds for all f ∈ C0(R3).

We now suppose that f ∈ L3(R3) is arbitrary. Let ϵ > 0 and choose ϕ ∈ C0(R3) such that ∥f − ϕ∥L3 <
ϵ. By the triangle inequality, we have

t
1
2 ∥Kt ∗ f∥L∞ ≤ t

1
2 ∥Kt ∗ (f − ϕ)∥L∞ + t

1
2 ∥Kt ∗ ϕ∥L∞

:= I + II.

By the first part, II → 0 as t → 0. Using the change of variable z above and the Hölder inequality, we
can bound I:

I ≤ t−1(4π)−
3
2

∫
R3

e−
|x−y|2

4t |f(y)− ϕ(y)| dy

≤ t−1(4π)−
3
2

(∫
R3

e−
3|x−y|2

8t dy
) 2

3 ∥f − ϕ∥L3

≤ t−1(4π)−
3
2

(∫
R3

−t
3
2 e−

|z|2
8 dz

) 2
3

ϵ

≤ Cϵ

for some constant C > 0 independent of ϵ. It follows that I can be made arbitrarily small depending
on the choice of ϕ. Combining the estimates for both I and II shows that

t
1
2 ∥Kt ∗ f∥L∞ → 0 as t → 0,

as desired.
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