Homework 7 Solutions

1. Set

$$
F(x):=\int_{x}^{x+1} f(t) d t=\int_{0}^{x+1} f(t) d t-\int_{0}^{x} f(t) d t
$$

Then $F(x) \equiv A$, so by the Lebesgue Differentiation Theorem ${ }^{1} F$ is differentiable almost everywhere and

$$
F^{\prime}(x)=f(x+1)-f(x)=0 \text { for a.e. } x \in \mathbb{R} .
$$

2. The proof is by contradiction. Suppose that

$$
f(x)=\sum_{j=1}^{n} g_{j}(x) \text { for some } g_{j} \in L^{p_{j}} \text { and each } 1 \leq p_{j}<\infty
$$

Set $E_{t}:=\{x: f(x)>t\}$ for $t>0$. By the Chebyshev inequality, we have

$$
\begin{aligned}
m\left(E_{t}\right) & \leq \sum_{j=1}^{n} m\left(\left\{x: g_{j}(x)>\frac{t}{n}\right\}\right) \\
& \leq \sum_{j=1}^{n} \frac{n^{p_{j}}}{t^{p_{j}}}\left\|g_{j}\right\|_{L^{p_{j}}}^{p_{j}} \\
& \leq \sum_{j=1}^{n} \frac{C_{j}}{t^{p_{j}}}
\end{aligned}
$$

where $C_{j}:=n^{p_{j}}\left\|g_{j}\right\|_{L^{p_{j}}}^{p_{j}}$. We note that the quantity on the right hand side is a polynomial in $y(t):=\frac{1}{t}$. On the other hand, by the definition of f

$$
f(x)>t>0 \Leftrightarrow|x|<e^{\frac{1}{t}}-2
$$

implying

$$
m\left(E_{t}\right)=2\left(e^{\frac{1}{t}}-2\right)=2\left(e^{y}-2\right) .
$$

In particular,

$$
2\left(e^{y}-2\right) \leq \sum_{j=1}^{n} C_{j} y^{p_{j}}
$$

for all $y>0$, which cannot be since a polynomial cannot bound an exponential for y large. It follows that f cannot be written as a sum of finitely many functions in $\cup_{1 \leq p<\infty} L^{p}(\mathbb{R})$.
3. We have

$$
\int_{\mathbb{R}^{n}} f(x-y) g_{\delta}(y) d y=\int_{\mathbb{R}^{n}} f(x-y) \delta^{-n} g\left(\delta^{-1} y\right) d y
$$

Making the change in variables $z(y)=\delta^{-1} y$. Then $D z(y)=\left(\delta^{-1} \delta_{i j}\right)_{i, j=1}^{n}$ so

$$
\operatorname{det} D z(y)=\delta^{-n}
$$

[^0]and the change of variable formula gives
\[

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f(x-y) g_{\delta}(y) d y & =\int_{z^{-1}\left(\mathbb{R}^{n}\right)} f(x-\delta z) g(z) d z \\
& =\int_{\mathbb{R}^{n}} f(x-\delta z) g(z) d z
\end{aligned}
$$
\]

Notice that

$$
\left|\int_{\mathbb{R}^{n}}(f(x-\delta z)-f(x)) g(z) d z\right| \leq\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \int_{\operatorname{supp} g}|f(x-\delta z)-f(x)| d z
$$

Thus, using the usual approximation argument by continuous functions with compact support, it is not hard to show that the integral on the right hand side tends to zero in L^{1} for any locally integrable f.
4. Fix $a \geq 0$. Then for each $n \in \mathbb{N}$ there is a k_{n} such that

$$
\frac{k_{n}-1}{n} \leq a \leq \frac{k_{n}}{n} .
$$

Set

$$
f_{s}(x):=\int_{x}^{x+s} f(y) d y=\int_{0}^{x+s} f(y) d y-\int_{0}^{x} f(y) d y \text { for } s>0
$$

Setting $s=\frac{1}{n}$ and applying the Lebesgue Differentiation Theorem, we find

$$
f_{\frac{1}{n}}^{\prime}(x)=f\left(x+\frac{1}{n}\right)-f(x) \geq 0 \text { for a.e. } x \in \mathbb{R}
$$

It follows that

$$
f_{\frac{1}{n}}\left(x+\frac{k_{n}-1}{n}\right) \geq f_{\frac{1}{n}}(x)
$$

so that

$$
n \int_{x+\frac{k_{n}-1}{n}}^{x+\frac{k_{n}}{n}} f(t) d t \geq n \int_{x}^{x+\frac{1}{n}} f(t) d t
$$

Since the sets

$$
\left[x+\frac{k_{n}-1}{n}, x+\frac{k_{n}}{n}\right] \text { and }\left[x, x+\frac{1}{n}\right]
$$

shrink nicely to $x+a$ and x, respectively, we can apply the Lebesgue Differentiation Theorem once more to conclude that for every $a \geq 0$ and a.e. $x \in \mathbb{R}$ we have

$$
f(x+a) \geq f(x) \text { for a.e. } x
$$

5. Let $E \subset[0,1]$ be measurable and fix $x \in[0,1]$. Note that, for each $n \in \mathbb{N}$, there is a $k_{n} \in\left\{1, \ldots, 2^{n}\right\}$ such that $x \in\left[\frac{k_{n}-1}{2^{n}}, \frac{k_{n}}{2^{n}}\right]$. In addition, the sets $\left[\frac{k_{n}-1}{2^{n}}, \frac{k_{n}}{2^{n}}\right]$ shrink nicely to x and

$$
2^{n} m\left(E \cap\left[\frac{k_{n}-1}{2^{n}}, \frac{k_{n}}{2^{n}}\right]\right)=2^{n} \int_{\frac{k_{n}-1}{2^{n}}}^{\frac{k_{n}}{2^{n}}} \chi_{E}(t) d t .
$$

By the Lebesgue Differentiation Theorem, for almost all $x \in[0,1]$

$$
\lim _{n \rightarrow \infty} 2^{n} m\left(E \cap\left[\frac{k_{n}-1}{2^{n}}, \frac{k_{n}}{2^{n}}\right]\right)=\chi_{E}(x) \in\{0,1\}
$$

Since the left-hand side of the expression above is equal to $m(E)$, we are done.
6. We first prove the result when $f \in C_{0}\left(\mathbb{R}^{3}\right)$. Set

$$
z(y):=\frac{x-y}{t^{\frac{1}{2}}} .
$$

Then $\operatorname{det} D z(y)=-t^{-\frac{3}{2}} d y$. Thus,

$$
\begin{aligned}
t^{\frac{1}{2}}\left\|K_{t} * f\right\|_{L^{\infty}} & \leq t^{\frac{1}{2}}\left|\int_{\mathbb{R}^{3}}(4 \pi t)^{-\frac{3}{2}} e^{-\frac{|x-y|^{2}}{4 t}} f(y) d y\right| \\
& =t^{\frac{1}{2}}\left|\int_{\mathbb{R}^{3}}(4 \pi)^{-\frac{3}{2}} e^{-\frac{|z|^{2}}{4}} f\left(x-t^{\frac{1}{2}} z\right) d z\right| \\
& \leq(4 \pi)^{-\frac{3}{2}}\|f\|_{L^{\infty}} t^{\frac{1}{2}} \int_{\mathbb{R}^{3}} e^{-\frac{|z|^{2}}{4}} d z \\
& \rightarrow 0 \text { as } t \rightarrow 0
\end{aligned}
$$

where we have applied the change of variable formula in the second line. It follows that the desired result holds for all $f \in C_{0}\left(\mathbb{R}^{3}\right)$.
We now suppose that $f \in L^{3}\left(\mathbb{R}^{3}\right)$ is arbitrary. Let $\epsilon>0$ and choose $\phi \in C_{0}\left(\mathbb{R}^{3}\right)$ such that $\|f-\phi\|_{L^{3}}<$ ϵ. By the triangle inequality, we have

$$
\begin{aligned}
t^{\frac{1}{2}}\left\|K_{t} * f\right\|_{L^{\infty}} & \leq t^{\frac{1}{2}}\left\|K_{t} *(f-\phi)\right\|_{L^{\infty}}+t^{\frac{1}{2}}\left\|K_{t} * \phi\right\|_{L^{\infty}} \\
& :=I+I I
\end{aligned}
$$

By the first part, $I I \rightarrow 0$ as $t \rightarrow 0$. Using the change of variable z above and the Hölder inequality, we can bound I :

$$
\begin{aligned}
I & \leq t^{-1}(4 \pi)^{-\frac{3}{2}} \int_{\mathbb{R}^{3}} e^{-\frac{|x-y|^{2}}{4 t}}|f(y)-\phi(y)| d y \\
& \leq t^{-1}(4 \pi)^{-\frac{3}{2}}\left(\int_{\mathbb{R}^{3}} e^{-\frac{3|x-y|^{2}}{8 t}} d y\right)^{\frac{2}{3}}\|f-\phi\|_{L^{3}} \\
& \leq t^{-1}(4 \pi)^{-\frac{3}{2}}\left(\int_{\mathbb{R}^{3}}-t^{\frac{3}{2}} e^{-\frac{|z|^{2}}{8}} d z\right)^{\frac{2}{3}} \epsilon \\
& \leq C \epsilon
\end{aligned}
$$

for some constant $C>0$ independent of ϵ. It follows that I can be made arbitrarily small depending on the choice of ϕ. Combining the estimates for both I and $I I$ shows that

$$
t^{\frac{1}{2}}\left\|K_{t} * f\right\|_{L^{\infty}} \rightarrow 0 \text { as } t \rightarrow 0
$$

as desired.

[^0]: ${ }^{1}$ See my notes on the Lebesgue Differentiation Theorem. In short, the Lebesgue Differentiation implies the usual FTC assuming the integrand is only L^{1} locally.

