Homework 7 Solutions

1. Set

$$F(x) := \int_{x}^{x+1} f(t) \, dt = \int_{0}^{x+1} f(t) \, dt - \int_{0}^{x} f(t) \, dt.$$

Then $F(x) \equiv A$, so by the Lebesgue Differentiation Theorem¹ F is differentiable almost everywhere and

$$F'(x) = f(x+1) - f(x) = 0$$
 for a.e. $x \in \mathbb{R}$.

2. The proof is by contradiction. Suppose that

$$f(x) = \sum_{j=1}^{n} g_j(x)$$
 for some $g_j \in L^{p_j}$ and each $1 \le p_j < \infty$.

Set $E_t := \{x : f(x) > t\}$ for t > 0. By the Chebyshev inequality, we have

$$m(E_t) \leq \sum_{j=1}^n m\left(\left\{x: g_j(x) > \frac{t}{n}\right\}\right)$$
$$\leq \sum_{j=1}^n \frac{n^{p_j}}{t^{p_j}} \|g_j\|_{L^{p_j}}^{p_j}$$
$$\leq \sum_{j=1}^n \frac{C_j}{t^{p_j}},$$

where $C_j := n^{p_j} \|g_j\|_{L^{p_j}}^{p_j}$. We note that the quantity on the right hand side is a polynomial in $y(t) := \frac{1}{t}$. On the other hand, by the definition of f

$$f(x) > t > 0 \Leftrightarrow |x| < e^{\frac{1}{t}} - 2$$

implying

$$m(E_t) = 2(e^{\frac{1}{t}} - 2) = 2(e^y - 2).$$

In particular,

$$2(e^y - 2) \le \sum_{j=1}^n C_j y^{p_j}$$

for all y > 0, which cannot be since a polynomial cannot bound an exponential for y large. It follows that f cannot be written as a sum of finitely many functions in $\bigcup_{1 \le p < \infty} L^p(\mathbb{R})$.

3. We have

$$\int_{\mathbb{R}^n} f(x-y)g_{\delta}(y) \, dy = \int_{\mathbb{R}^n} f(x-y)\delta^{-n}g(\delta^{-1}y) \, dy$$

Making the change in variables $z(y) = \delta^{-1}y$. Then $Dz(y) = (\delta^{-1}\delta_{ij})_{i,j=1}^n$ so

 $\det Dz(y) = \delta^{-n},$

¹See my notes on the Lebesgue Differentiation Theorem. In short, the Lebesgue Differentiation implies the usual FTC assuming the integrand is only L^1 locally.

and the change of variable formula gives

$$\int_{\mathbb{R}^n} f(x-y)g_{\delta}(y) \, dy = \int_{z^{-1}(\mathbb{R}^n)} f(x-\delta z)g(z) \, dz$$
$$= \int_{\mathbb{R}^n} f(x-\delta z)g(z) \, dz.$$

Notice that

$$\left|\int_{\mathbb{R}^n} (f(x-\delta z) - f(x))g(z)\,dz\right| \le \|g\|_{L^{\infty}(\mathbb{R}^n)} \int_{\operatorname{supp} g} |f(x-\delta z) - f(x)|\,dz.$$

Thus, using the usual approximation argument by continuous functions with compact support, it is not hard to show that the integral on the right hand side tends to zero in L^1 for any locally integrable f.

4. Fix $a \ge 0$. Then for each $n \in \mathbb{N}$ there is a k_n such that

$$\frac{k_n - 1}{n} \le a \le \frac{k_n}{n}$$

 Set

$$f_s(x) := \int_x^{x+s} f(y) \, dy = \int_0^{x+s} f(y) \, dy - \int_0^x f(y) \, dy \text{ for } s > 0.$$

Setting $s = \frac{1}{n}$ and applying the Lebesgue Differentiation Theorem, we find

$$f'_{\frac{1}{n}}(x) = f(x + \frac{1}{n}) - f(x) \ge 0$$
 for a.e. $x \in \mathbb{R}$.

It follows that

$$f_{\frac{1}{n}}\left(x + \frac{k_n - 1}{n}\right) \ge f_{\frac{1}{n}}(x)$$

so that

$$n\int_{x+\frac{k_{n-1}}{n}}^{x+\frac{k_{n-1}}{n}}f(t)\,dt \ge n\int_{x}^{x+\frac{1}{n}}f(t)\,dt.$$

Since the sets

$$\left[x+\frac{k_n-1}{n},x+\frac{k_n}{n}\right] \text{ and } \left[x,x+\frac{1}{n}\right]$$

shrink nicely to x + a and x, respectively, we can apply the Lebesgue Differentiation Theorem once more to conclude that for every $a \ge 0$ and a.e. $x \in \mathbb{R}$ we have

$$f(x+a) \ge f(x)$$
 for a.e. x.

5. Let $E \subset [0,1]$ be measurable and fix $x \in [0,1]$. Note that, for each $n \in \mathbb{N}$, there is a $k_n \in \{1, \ldots, 2^n\}$ such that $x \in [\frac{k_n-1}{2^n}, \frac{k_n}{2^n}]$. In addition, the sets $[\frac{k_n-1}{2^n}, \frac{k_n}{2^n}]$ shrink nicely to x and

$$2^n m\left(E \cap \left[\frac{k_n - 1}{2^n}, \frac{k_n}{2^n}\right]\right) = 2^n \int_{\frac{k_n - 1}{2^n}}^{\frac{k_n}{2^n}} \chi_E(t) \, dt.$$

By the Lebesgue Differentiation Theorem, for almost all $x \in [0, 1]$

$$\lim_{n \to \infty} 2^n m \left(E \cap \left[\frac{k_n - 1}{2^n}, \frac{k_n}{2^n} \right] \right) = \chi_E(x) \in \{0, 1\}.$$

Since the left-hand side of the expression above is equal to m(E), we are done.

6. We first prove the result when $f \in C_0(\mathbb{R}^3)$. Set

$$z(y) := \frac{x-y}{t^{\frac{1}{2}}}.$$

Then det $Dz(y) = -t^{-\frac{3}{2}} dy$. Thus,

$$\begin{split} t^{\frac{1}{2}} \| K_t * f \|_{L^{\infty}} &\leq t^{\frac{1}{2}} \Big| \int_{\mathbb{R}^3} (4\pi t)^{-\frac{3}{2}} e^{-\frac{|x-y|^2}{4t}} f(y) \, dy \Big| \\ &= t^{\frac{1}{2}} \Big| \int_{\mathbb{R}^3} (4\pi)^{-\frac{3}{2}} e^{-\frac{|z|^2}{4}} f\left(x - t^{\frac{1}{2}}z\right) \, dz \Big| \\ &\leq (4\pi)^{-\frac{3}{2}} \| f \|_{L^{\infty}} t^{\frac{1}{2}} \int_{\mathbb{R}^3} e^{-\frac{|z|^2}{4}} \, dz \\ &\to 0 \text{ as } t \to 0 \end{split}$$

where we have applied the change of variable formula in the second line. It follows that the desired result holds for all $f \in C_0(\mathbb{R}^3)$.

We now suppose that $f \in L^3(\mathbb{R}^3)$ is arbitrary. Let $\epsilon > 0$ and choose $\phi \in C_0(\mathbb{R}^3)$ such that $||f - \phi||_{L^3} < \epsilon$. By the triangle inequality, we have

$$t^{\frac{1}{2}} \| K_t * f \|_{L^{\infty}} \le t^{\frac{1}{2}} \| K_t * (f - \phi) \|_{L^{\infty}} + t^{\frac{1}{2}} \| K_t * \phi \|_{L^{\infty}}$$

:= I + II.

By the first part, $II \to 0$ as $t \to 0$. Using the change of variable z above and the Hölder inequality, we can bound I:

$$I \leq t^{-1} (4\pi)^{-\frac{3}{2}} \int_{\mathbb{R}^3} e^{-\frac{|x-y|^2}{4t}} |f(y) - \phi(y)| \, dy$$

$$\leq t^{-1} (4\pi)^{-\frac{3}{2}} \Big(\int_{\mathbb{R}^3} e^{-\frac{3|x-y|^2}{8t}} \, dy \Big)^{\frac{2}{3}} \|f - \phi\|_{L^3}$$

$$\leq t^{-1} (4\pi)^{-\frac{3}{2}} \Big(\int_{\mathbb{R}^3} -t^{\frac{3}{2}} e^{-\frac{|z|^2}{8}} \, dz \Big)^{\frac{2}{3}} \epsilon$$

$$\leq C\epsilon$$

for some constant C > 0 independent of ϵ . It follows that I can be made arbitrarily small depending on the choice of ϕ . Combining the estimates for both I and II shows that

$$t^{\frac{1}{2}} \| K_t * f \|_{L^{\infty}} \to 0 \text{ as } t \to 0,$$

1

as desired.