Homework 8 Solutions

1. Suppose E is ν-null and write $\nu=\nu^{+}-\nu^{-}$. Write $X=P \cup N$ where the union is disjoint, P is a positive set, and N is a negative set. Then $E=(P \cap E) \cup(N \cap E)$. Furthermore, $|\nu|=\nu^{+}+\nu^{-}$. Since $E \cap P$ and $E \cap N$ are measurable and $\nu(E)=0$, we have

$$
0=\nu(E \cap P)=\nu^{+}(E \cap P)
$$

Similarly,

$$
\nu^{-}(E \cap N)=0
$$

Combining each case shows $|\nu|(E)=0$, since

$$
|\nu|(E)=\nu^{+}(E \cap P)+\nu^{-}(E \cap N) .
$$

If $|\nu|(E)=0$, then

$$
\nu^{+}(E \cap P)=\nu^{-}(E \cap N)=0
$$

so $\nu(E)=0$.
Suppose now that $\nu \perp \mu$. Then there exist sets $E, F \in \mathcal{M}$ such that $E \cap F=\emptyset, E \cup F=X, E$ is null for μ, and F is null for ν. From above, F is null for $|\nu|$ also so $|\nu| \perp \mu$. Similarly, if $|\nu| \perp \mu$ and E and F are as above, except F is null for $|\nu|$, then F is null for ν and $\nu \perp \mu$. An analogous argument holds for $\nu^{ \pm}$.
2. Suppose $\nu \ll \mu$ and let $X=P \cup N$ be a Hahn decomposition for μ. Let $E \in \mathcal{M}$ be μ-null. Then $\mu(E \cap P)=\mu(E \cap N)=0$ since both $E \cap P \in \mathcal{M}$ and $E \cap N \in \mathcal{M}$ so

$$
\nu(E \cap P)=\nu(E \cap N)=0
$$

implying $\nu^{+}(E)=\nu^{-}(E)=0$. This proves that $|\nu| \ll \mu, \nu^{+} \ll \mu$, and $\nu^{-} \ll \mu$. If $\nu^{+} \ll \mu$ and $\nu^{-} \ll \mu$, then it is clear $\nu \ll \mu$ since $\nu=\nu^{+}-\nu^{-}$. Hence, the proof is complete.
3. (a) For each j, there are $E_{j}, F_{j} \in \mathbb{N}$ such that for each j we have $X=E_{j} \cup F_{j}, E_{j} \cap F_{j}=\emptyset, E_{j}$ is μ-null, and F_{j} is ν_{j}-null. Set $F:=\cap_{1}^{\infty} F_{j}$ and $E:=\cup_{1}^{\infty}\left(E_{j} \backslash F\right)$. Then $X=E \cup F$ and $E \cap F=\emptyset$ by construction. The set E is μ-null since the countable union of μ-null sets is μ-null. Furthermore,

$$
\sum_{1}^{\infty} \nu_{j}(F)=\lim _{n \rightarrow \infty} \sum_{1}^{n} \nu_{j}(F)=0
$$

since $\nu_{j}(F)=0$ for all j. It follows that $\sum_{1}^{\infty} \nu_{j} \perp \mu$.
(b) Suppose $\nu_{j} \ll \mu$ for each j and let $E \in \mathcal{M}$ be μ-null. Then $\nu_{j}(E)=0$ for each j. Hence,

$$
\sum_{1}^{\infty} \nu_{j}(E)=\lim _{n \rightarrow \infty} \sum_{1}^{n} \nu_{j}(E)=0
$$

Since E is arbitrary, $\sum_{1}^{\infty} \nu_{j} \ll \mu$ also.
4. The idea is to use convolution 1 Set

$$
M:=\left(\cup_{n \in \mathbb{N}}\left(x_{n}+E\right)\right)^{c}
$$

We show that M is a null set. Consider the convolution

$$
\chi_{M} * \chi_{E}(x)=\int_{\mathbb{R}^{d}} \chi_{M}(y) \chi_{E}(y-x) d x
$$

Without loss of generality, we may assume $m(E)<\infty$ since we can always restrict our attention to a subset of E with finite positive measure. Since χ_{M} and χ_{E} are bounded measurable functions and $\chi_{E} \in L^{1}\left(\mathbb{R}^{d}\right)$, their convolution is a continuous function on \mathbb{R}^{d} (this was proved in an earlier homework). Evaluating at x_{n} gives

$$
\chi_{M} * \chi_{E}\left(x_{n}\right)=0
$$

since $y-x_{n} \in E$ iff $y \in M^{c}$ iff $\chi_{M}(y)=0$. Continuity of the convolution and density of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ implies $\chi_{M} * \chi_{E} \equiv 0$. Thus,

$$
0=\int_{\mathbb{R}^{d}} \chi_{M}(y) \chi_{E}(y-x) d y
$$

Integrating over \mathbb{R}^{d} in x and applying the Tonelli theorem gives:

$$
\begin{aligned}
0 & =\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \chi_{M}(y) \chi_{E}(y-x) d y d x \\
& =\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \chi_{M}(y) \chi_{E}(y-x) d x d y \\
& =m(M) m(E)
\end{aligned}
$$

Since $m(E)>0$, this implies $m(M)=0$.
5. First, note that $\nu \leq \mu$ implies $\nu \ll \mu$ since $\mu(A)=0$ forces $\nu(A)=0$. By the Radon-Nikodym Theorem, $d \nu=f d \mu$ where $f=\frac{d \nu}{d \mu}$. Set

$$
E:=\{x \in X: f=1\}
$$

Since

$$
\nu(A)=\int_{A} f \mu
$$

for any measurable A, ν restricts to μ on E. In particular, $\mu(E)-\nu(E)=0$. Since $\nu \ll \mu-\nu$, we have $\nu(E)=0$ also. Thus, $\mu(E)=0$ and the proof is complete.
6. Let $E \in \mathcal{M}$ be λ-null. Then $\lambda(E)=\mu(E)+\nu(E)=0$ implying $\mu(E)=0$ since both μ and ν are positive. Thus, $\mu \ll \lambda$ also. On the other hand, $\lambda \ll \mu$ since $\nu \ll \mu$ and $\lambda=\mu+\nu$. By Proposition 3.9, we find $\nu \ll \lambda$ and

$$
\frac{d \nu}{d \lambda}=\frac{d \nu}{d \mu} \frac{d \mu}{d \lambda} \lambda-\text { a.e. }
$$

Fix $E \in \mathcal{M}$ and suppose $\nu(E)>0$. In particular, this implies $\mu(E)>0$ since $\nu \ll \mu$. Observe that, since $\lambda \ll \mu$ and $\mu \ll \nu$, it suffices to show $0 \leq f<1 \lambda$-a.e.. Suppose $f \geq 1$ for some $E \in \mathcal{M}$ with $\lambda(E)>0$. Applying Proposition 3.9 with $g=\chi_{E}$, we find

$$
\nu(E)=\int_{E} d \nu=\int_{E} \frac{d \nu}{d \lambda} d \lambda \geq \int_{E} d \lambda=\lambda(E) .
$$

But $\lambda(E)=\mu(E)+\nu(E)$ so we must have $\mu(E)=0$ which implies $\nu(E)=0$ since $\nu \ll \mu$. If $\frac{d \nu}{d \lambda}<0$ on for $\lambda(E)>0$, then a similar computation shows

$$
\nu(E)=\int_{E} \frac{d \nu}{d \lambda} d \lambda<0
$$

[^0]whenever $\nu(E) \neq 0$. It follows that $0 \leq f<1 \lambda$-a.e., since the assumptions $f<0$ on a set of λ-positive measure and $f \geq 1$ on a set of λ-positive measure both lead to a contradiction.
To prove the remaining assertion, we will show that $(1-f) \frac{d \nu}{d \mu}=f \mu$-a.e. Indeed, using the identities
$$
\frac{d \nu}{d \mu}=\frac{d \nu}{d \lambda} \frac{d \lambda}{d \mu} \text { and } \frac{d \lambda}{d \mu}=1+\frac{d \nu}{d \mu}
$$
we find
$$
(1-f) \frac{d \nu}{d \mu}=\frac{\nu}{d \lambda}\left(\frac{d \lambda}{d \mu}-\frac{d \nu}{d \mu}\right)=\frac{d \nu}{d \lambda} \mu-\text { a.e. }
$$
as was to be shown.
7. Let E be a $\mu_{1} \times \mu_{2}$-null set. We need to show that E is $\nu_{1} \times \nu_{2}$ null. By the Fubini Theorem, we have:
\[

$$
\begin{aligned}
0 & =\mu_{1} \times \mu_{2}(E) \\
& =\iint \chi_{E}(x, y) d \mu_{1}(x) d \mu_{2}(y) \\
& =\iint \chi_{E}(x, y) d \mu_{2}(y) d \mu_{1}(x) \\
& =\int \mu_{2}\left(E_{x}\right) d \mu_{1}(x)
\end{aligned}
$$
\]

implying $\mu_{2}\left(E_{x}\right)=0$ for μ_{1}-a.e. $x \in X$. Here, $E_{x}:=\{y \in Y:(x, y) \in E\}$. Since $\nu_{i} \ll \mu_{i}$ for $i=1,2$, we thus have

$$
\begin{aligned}
\nu_{1} \times \nu_{2}(E) & =\iint \chi_{E}(x, y) d \nu_{1}(x) d \nu_{2}(y) \\
& =\iint \chi_{E}(x, y) d \nu_{2}(y) d \nu_{1}(x) \\
& =\int \nu_{2}\left(E_{x}\right) d \nu_{1}(x) \\
& =0 .
\end{aligned}
$$

It follows that $\nu_{1} \times \nu_{2} \ll \mu_{1} \times \mu_{2}$ so the Radon-Nikodym Theorem applies.
We now show that

$$
\frac{d\left(\nu_{1} \times \nu_{2}\right)}{d\left(\mu_{1} \times \mu_{2}\right)}(x, y)=\frac{d \nu_{1}}{d \mu_{1}}(x) \frac{d \nu_{2}}{d \mu_{2}}(y)
$$

for $\mu_{1} \times \mu_{2}$-a.e. (x, y). By the first part, we may apply the Radon-Nikodym Theorem to obtain a $\mu_{1} \times \mu_{2}$-measurable function f such that $d\left(\nu_{1} \times \nu_{2}\right)=f d\left(\mu_{1} \times \mu_{2}\right)$. In addition, since $\nu_{i} \ll \mu_{i}$ for $i=1,2$ we may apply the Radon-Nikodym Theorem for each i to obtain μ_{i}-integrable functions f_{i} such that $d \nu_{i}=f_{i} d \mu_{i}$. Since the Radon-Nikodym derivative is unique up to a $\mu_{1} \times \mu_{2}$-null set, it suffices to show that

$$
d\left(\nu_{1} \times \nu_{2}\right)(x, y)=f_{1}(x) f_{2}(y) d \mu_{1}(x) d \mu_{2}(y)
$$

Furthermore, by Caratheodory's Theorem we can do the computation on a measurable rectangle; i.e. a set $E=A \times B \subset X \times Y$ where A is μ_{1}-measurable and B is μ_{2}-measurable. We have:

$$
\begin{aligned}
\nu_{1} \times \nu_{2}(A \times B) & =\iint_{A \times B} d \nu_{1} d \nu_{2} \\
& =\int_{A} d \nu_{1} \int_{B} d \nu_{2} \\
& =\nu_{1}(A) \nu_{2}(B) \\
& =\int_{A} f_{1}(x) d \mu_{1} \int_{B} f_{2}(y) d \mu_{2} \\
& =\iint_{A \times B} f_{1}(x) f_{2}(y) d \mu_{1} d \mu_{2} .
\end{aligned}
$$

This completes the proof.

[^0]: ${ }^{1}$ This is a useful qual trick and can be used on several of the earlier problem sets from the first quarter.

