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Homework 8 Solutions

Suppose E is v-null and write v = vT — v~. Write X = P U N where the union is disjoint, P is a

positive set, and N is a negative set. Then E = (PN E)U (N NE). Furthermore, |v| = v +v~. Since
ENP and ENN are measurable and v(E) = 0, we have

0=v(ENP)=v ' (ENP).

Similarly,
v (ENN)=0.
Combining each case shows |v|(E) = 0, since
lv|[(E) =vT(ENP)+v (ENN).

If |v|(E) = 0, then

vH(ENP)=v (ENN)=0
so v(E) =0.

Suppose now that v L u. Then there exist sets E, F € M such that FNF =0, FUF = X, F is null
for u, and F is null for v. From above, F is null for |v| also so |v| L p. Similarly, if |v| L p and E and

F are as above, except F' is null for |v|, then F is null for » and v L p. An analogous argument holds

for vE.

Suppose v < p and let X = P U N be a Hahn decomposition for u. Let E € M be p-null. Then
wWENP)=u(ENN)=0since both ENP € M and ENN € M so

vVIENP)=v(ENN)=0

implying v*(E) = v~ (E) = 0. This proves that |[v| < u, vT < p, and v~ < p. If vT < p and
v~ < p, then it is clear v < p since v = v+ — v~. Hence, the proof is complete.

a) For each j, there are E;, F; € N such that for each j we have X = E, UF;,, E,NF; =0, E; is
VR J 3 i J J

p-null, and F; is v;-null. Set F':= N°F; and E := U (E;\ F). Then X = EUF and ENF = () by

construction. The set F is p-null since the countable union of p-null sets is p-null. Furthermore,

> vi(F) = nli_{r;oz vi(F) =0

since vj(F) = 0 for all j. It follows that 1" v; L p.
(b) Suppose v; < p for each j and let E € M be p-null. Then v;(E) = 0 for each j. Hence,

> vi(E) = lim > vi(E)=o0.
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Since E is arbitrary, > ;" v; < p also.



4. The idea is to use convolution[t] Set
C

M= ( Unen (2 + E))

We show that M is a null set. Consider the convolution
s xe@) = [ el o) de

Without loss of generality, we may assume m(E) < oo since we can always restrict our attention
to a subset of E with finite positive measure. Since xj; and xg are bounded measurable functions
and xg € L*(R?), their convolution is a continuous function on R (this was proved in an earlier
homework). Evaluating at x,, gives

XM * XE(Zn) =0

since y —xz, € E iff y € M€ iff xp(y) = 0. Continuity of the convolution and density of {z, }nen
implies x s * xg = 0. Thus,

Ozé;mmwxﬂy—@dy

Integrating over R? in x and applying the Tonelli theorem gives:

0=/]Rd /Rd xm (Y)xe(y — x) dydx

= /Rd /Rd xm (Y)xe(y — ) dody
=m(M)m(E).

Since m(E) > 0, this implies m(M) = 0.

5. First, note that v < p implies v < p since p(A) = 0 forces v(A) = 0. By the Radon-Nikodym
Theorem, dv = fdu where f = Z—Z. Set

E={zeX:f=1}

o) = | fu

for any measurable A, v restricts to p on E. In particular, u(E) —v(E) = 0. Since v < p— v, we have
v(E) = 0 also. Thus, u(E) = 0 and the proof is complete.

Since

6. Let E € M be Anull. Then A\(E) = pu(E) + v(E) = 0 implying u(E) = 0 since both p and v are
positive. Thus, p < A also. On the other hand, A <« p since v < p and A = p + v. By Proposition

3.9, we find ¥ < X and
dv  dvdp

SR N
d\  dpdA

Fix E € M and suppose v(E) > 0. In particular, this implies u(E) > 0 since v < p. Observe that,

since A < p and p < v, it suffices to show 0 < f < 1 A-a.e.. Suppose f > 1 for some F € M with

A(E) > 0. Applying Proposition 3.9 with ¢ = xg, we find

V(E):/Edu:/E%d)\z/Ed)\:/\(E).

But A\(E) = u(E) + v(E) so we must have yu(E) = 0 which implies v(E) = 0 since v < p. If % <0
on for A(E) > 0, then a similar computation shows

a.e.

dv
v(E :/—d/\<0
(E) D

1This is a useful qual trick and can be used on several of the earlier problem sets from the first quarter.



whenever v(E) # 0. It follows that 0 < f < 1 A-a.e., since the assumptions f < 0 on a set of A-positive
measure and f > 1 on a set of A\-positive measure both lead to a contradiction.

To prove the remaining assertion, we will show that (1 — f )g—z = f p-a.e. Indeed, using the identities

dv  dvd\ d\ dv
—=——and — =14 —,
dp  dAi du dp du

we find
v d\ dv dv

(1 f)dﬂfa(@ du) ax K

—a.e.,

as was to be shown.

7. Let E be a puy X puo-null set. We need to show that F is v1 X 15 null. By the Fubini Theorem, we have:
0=p1 X p2(E)

_ / / XE (2, ) dus (2)dpia (y)
://XE(%y)duz(y)dm(fﬁ)
- / a(E.) dyu ()

implying po(E,) = 0 for pi-a.e. © € X. Here, E, :={y € Y : (x,y) € E}. Since v; < p; for i = 1,2,

we thus have
nxn(E) = [ [ xpa) dn()in

_ / / X5 (@, ) dva(y)dv (z)

:/VQ(EI)dl/l(x)
=0.

It follows that 1y X vo < 1 X pe so the Radon-Nikodym Theorem applies.

We now show that
d(v1 X va) % divy

d(p x M2)(I’y) B dpn (=) dpa Y
for pu; X po-a.e. (z,y). By the first part, we may apply the Radon-Nikodym Theorem to obtain a
p1 X po-measurable function f such that d(v; x vo) = fd(p1 x pe2). In addition, since v; < p; for
1 = 1,2 we may apply the Radon-Nikodym Theorem for each i to obtain p,-integrable functions f; such
that dv; = f; du;. Since the Radon-Nikodym derivative is unique up to a u; X po-null set, it suffices to
show that

d(vy x v2)(@,y) = fi(z)f2(y) dpr(z)dpz(y).
Furthermore, by Caratheodory’s Theorem we can do the computation on a measurable rectangle; i.e.
aset E=Ax B C X xY where A is yj-measurable and B is po-measurable. We have:

V1 X I/Q(A X B) = // dl/ldl/g
AxB

/dyl/ dl/g

_Vl )

/fl dul/f2 ) dp
[ it



This completes the proof.



