
Homework 8 Solutions

1. Suppose E is ν-null and write ν = ν+ − ν−. Write X = P ∪ N where the union is disjoint, P is a
positive set, and N is a negative set. Then E = (P ∩E)∪ (N ∩E). Furthermore, |ν| = ν++ ν−. Since
E ∩ P and E ∩N are measurable and ν(E) = 0, we have

0 = ν(E ∩ P ) = ν+(E ∩ P ).

Similarly,
ν−(E ∩N) = 0.

Combining each case shows |ν|(E) = 0, since

|ν|(E) = ν+(E ∩ P ) + ν−(E ∩N).

If |ν|(E) = 0, then
ν+(E ∩ P ) = ν−(E ∩N) = 0

so ν(E) = 0.

Suppose now that ν ⊥ µ. Then there exist sets E,F ∈ M such that E ∩ F = ∅, E ∪ F = X, E is null
for µ, and F is null for ν. From above, F is null for |ν| also so |ν| ⊥ µ. Similarly, if |ν| ⊥ µ and E and
F are as above, except F is null for |ν|, then F is null for ν and ν ⊥ µ. An analogous argument holds
for ν±.

2. Suppose ν ≪ µ and let X = P ∪ N be a Hahn decomposition for µ. Let E ∈ M be µ-null. Then
µ(E ∩ P ) = µ(E ∩N) = 0 since both E ∩ P ∈ M and E ∩N ∈ M so

ν(E ∩ P ) = ν(E ∩N) = 0

implying ν+(E) = ν−(E) = 0. This proves that |ν| ≪ µ, ν+ ≪ µ, and ν− ≪ µ. If ν+ ≪ µ and
ν− ≪ µ, then it is clear ν ≪ µ since ν = ν+ − ν−. Hence, the proof is complete.

3. (a) For each j, there are Ej , Fj ∈ N such that for each j we have X = Ej ∪ Fj , Ej ∩ Fj = ∅, Ej is
µ-null, and Fj is νj-null. Set F := ∩∞

1 Fj and E := ∪∞
1 (Ej \F ). Then X = E∪F and E∩F = ∅ by

construction. The set E is µ-null since the countable union of µ-null sets is µ-null. Furthermore,

∞∑
1

νj(F ) = lim
n→∞

n∑
1

νj(F ) = 0

since νj(F ) = 0 for all j. It follows that
∑∞

1 νj ⊥ µ.

(b) Suppose νj ≪ µ for each j and let E ∈ M be µ-null. Then νj(E) = 0 for each j. Hence,

∞∑
1

νj(E) = lim
n→∞

n∑
1

νj(E) = 0.

Since E is arbitrary,
∑∞

1 νj ≪ µ also.
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4. The idea is to use convolution.1 Set

M :=
(
∪n∈N (xn + E)

)c

.

We show that M is a null set. Consider the convolution

χM ∗ χE(x) =

∫
Rd

χM (y)χE(y − x) dx.

Without loss of generality, we may assume m(E) < ∞ since we can always restrict our attention
to a subset of E with finite positive measure. Since χM and χE are bounded measurable functions
and χE ∈ L1(Rd), their convolution is a continuous function on Rd (this was proved in an earlier
homework). Evaluating at xn gives

χM ∗ χE(xn) = 0

since y − xn ∈ E iff y ∈ M c iff χM (y) = 0. Continuity of the convolution and density of {xn}n∈N
implies χM ∗ χE ≡ 0. Thus,

0 =

∫
Rd

χM (y)χE(y − x) dy.

Integrating over Rd in x and applying the Tonelli theorem gives:

0 =

∫
Rd

∫
Rd

χM (y)χE(y − x) dydx

=

∫
Rd

∫
Rd

χM (y)χE(y − x) dxdy

= m(M)m(E).

Since m(E) > 0, this implies m(M) = 0.

5. First, note that ν ≤ µ implies ν ≪ µ since µ(A) = 0 forces ν(A) = 0. By the Radon-Nikodym
Theorem, dν = fdµ where f = dν

dµ . Set

E := {x ∈ X : f = 1}.

Since

ν(A) =

∫
A

fµ

for any measurable A, ν restricts to µ on E. In particular, µ(E)− ν(E) = 0. Since ν ≪ µ− ν, we have
ν(E) = 0 also. Thus, µ(E) = 0 and the proof is complete.

6. Let E ∈ M be λ-null. Then λ(E) = µ(E) + ν(E) = 0 implying µ(E) = 0 since both µ and ν are
positive. Thus, µ ≪ λ also. On the other hand, λ ≪ µ since ν ≪ µ and λ = µ + ν. By Proposition
3.9, we find ν ≪ λ and

dν

dλ
=

dν

dµ

dµ

dλ
λ− a.e.

Fix E ∈ M and suppose ν(E) > 0. In particular, this implies µ(E) > 0 since ν ≪ µ. Observe that,
since λ ≪ µ and µ ≪ ν, it suffices to show 0 ≤ f < 1 λ-a.e.. Suppose f ≥ 1 for some E ∈ M with
λ(E) > 0. Applying Proposition 3.9 with g = χE , we find

ν(E) =

∫
E

dν =

∫
E

dν

dλ
dλ ≥

∫
E

dλ = λ(E).

But λ(E) = µ(E) + ν(E) so we must have µ(E) = 0 which implies ν(E) = 0 since ν ≪ µ. If dν
dλ < 0

on for λ(E) > 0, then a similar computation shows

ν(E) =

∫
E

dν

dλ
dλ < 0

1This is a useful qual trick and can be used on several of the earlier problem sets from the first quarter.
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whenever ν(E) ̸= 0. It follows that 0 ≤ f < 1 λ-a.e., since the assumptions f < 0 on a set of λ-positive
measure and f ≥ 1 on a set of λ-positive measure both lead to a contradiction.

To prove the remaining assertion, we will show that (1− f) dνdµ = f µ-a.e. Indeed, using the identities

dν

dµ
=

dν

dλ

dλ

dµ
and

dλ

dµ
= 1 +

dν

dµ
,

we find

(1− f)
dν

dµ
=

ν

dλ
(
dλ

dµ
− dν

dµ
) =

dν

dλ
µ− a.e.,

as was to be shown.

7. Let E be a µ1 ×µ2-null set. We need to show that E is ν1 × ν2 null. By the Fubini Theorem, we have:

0 = µ1 × µ2(E)

=

∫ ∫
χE(x, y) dµ1(x)dµ2(y)

=

∫ ∫
χE(x, y) dµ2(y)dµ1(x)

=

∫
µ2(Ex) dµ1(x)

implying µ2(Ex) = 0 for µ1-a.e. x ∈ X. Here, Ex := {y ∈ Y : (x, y) ∈ E}. Since νi ≪ µi for i = 1, 2,
we thus have

ν1 × ν2(E) =

∫ ∫
χE(x, y) dν1(x)dν2(y)

=

∫ ∫
χE(x, y) dν2(y)dν1(x)

=

∫
ν2(Ex) dν1(x)

= 0.

It follows that ν1 × ν2 ≪ µ1 × µ2 so the Radon-Nikodym Theorem applies.

We now show that
d(ν1 × ν2)

d(µ1 × µ2)
(x, y) =

dν1
dµ1

(x)
dν2
dµ2

(y)

for µ1 × µ2-a.e. (x, y). By the first part, we may apply the Radon-Nikodym Theorem to obtain a
µ1 × µ2-measurable function f such that d(ν1 × ν2) = f d(µ1 × µ2). In addition, since νi ≪ µi for
i = 1, 2 we may apply the Radon-Nikodym Theorem for each i to obtain µi-integrable functions fi such
that dνi = fi dµi. Since the Radon-Nikodym derivative is unique up to a µ1 ×µ2-null set, it suffices to
show that

d(ν1 × ν2)(x, y) = f1(x)f2(y) dµ1(x)dµ2(y).

Furthermore, by Caratheodory’s Theorem we can do the computation on a measurable rectangle; i.e.
a set E = A×B ⊂ X × Y where A is µ1-measurable and B is µ2-measurable. We have:

ν1 × ν2(A×B) =

∫ ∫
A×B

dν1dν2

=

∫
A

dν1

∫
B

dν2

= ν1(A)ν2(B)

=

∫
A

f1(x) dµ1

∫
B

f2(y) dµ2

=

∫ ∫
A×B

f1(x)f2(y) dµ1dµ2.
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This completes the proof.
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