Problem 1. Let $A \subset \mathbb{R}$ be Lebesgue measurable with $m(A)>0$. Prove that there exist $k, n \in \mathbb{N}$ and $x, y \in A$ with $|x-y|=\frac{k}{2^{n}}$.

Problem 2. Let (X, \mathcal{A}) be a measurable space, and let μ and ν be measures on (X, \mathcal{A}). The measure ν is called absolutely continuous with respect to μ if every μ-null set is also a ν-null set, i.e.

$$
A \in \mathcal{A} \quad \text { and } \quad \mu(A)=0 \quad \Longrightarrow \nu(A)=0 .
$$

(i) Show that if ν is a finite measure, then ν is absolutely continuous with respect to μ if and only if $\forall \varepsilon>0 \exists \delta>0$ such that $\forall A \in \mathcal{A}, \mu(A)<\delta \Longrightarrow$ $\nu(A)<\varepsilon$.
(ii) Show that this equivalence is not true without the assumption that ν is finite.

Problem 3. Let $f_{n} \in L^{1}(\mathbb{R}), n=1,2, \ldots$, and assume that the sequence

$$
\int\left|f_{n}(x)\right| d x
$$

is bounded. Assume that $f_{n} \rightarrow f$ a.e. as $n \rightarrow \infty$. Show that $f \in L^{1}(\mathbb{R})$ and

$$
\int_{\mathbb{R}}\left|f_{n}(x)\right| d x-\int_{\mathbb{R}}\left|f_{n}(x)-f(x)\right| d x \rightarrow \int_{\mathbb{R}}|f(x)| d x
$$

as $n \rightarrow \infty$.

Problem 4. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0, \quad \lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x=f(1)
$$

Problem 5. Let $f \in L_{\text {loc }}^{1}(\mathbb{R})$ be such that

$$
\int_{|x| \leq r}|f(x)| d x \leq(r+1)^{a},
$$

for all $r \geq 0$ and for some $a \in \mathbb{R}$. Let g be a Lebesgue measurable function such that

$$
|g(x)| \leq e^{-|x|}
$$

Show that

$$
x \mapsto f(x) g(t x) \in L^{1}(\mathbb{R})
$$

for any $t \in \mathbb{R} \backslash 0$.

