HOMEWORK 1 (DUE FRIDAY, JANUARY 12, 2024, 11:59 PM)

Problem 1. Let $A \subset \mathbb{R}$ be Lebesgue measurable with m(A) > 0. Prove that there exist $k, n \in \mathbb{N}$ and $x, y \in A$ with $|x - y| = \frac{k}{2^n}$.

Problem 2. Let (X, \mathcal{A}) be a measurable space, and let μ and ν be measures on (X, \mathcal{A}) . The measure ν is called absolutely continuous with respect to μ if every μ -null set is also a ν -null set, i.e.

$$A \in \mathcal{A}$$
 and $\mu(A) = 0 \implies \nu(A) = 0.$

- (i) Show that if ν is a finite measure, then ν is absolutely continuous with respect to μ if and only if $\forall \varepsilon > 0 \exists \delta > 0$ such that $\forall A \in \mathcal{A}, \, \mu(A) < \delta \Longrightarrow \nu(A) < \varepsilon$.
- (ii) Show that this equivalence is not true without the assumption that ν is finite.

Problem 3. Let $f_n \in L^1(\mathbb{R})$, n = 1, 2, ..., and assume that the sequence

$$\int |f_n(x)| dx$$

is bounded. Assume that $f_n \to f$ a.e. as $n \to \infty$. Show that $f \in L^1(\mathbb{R})$ and

$$\int_{\mathbb{R}} |f_n(x)| dx - \int_{\mathbb{R}} |f_n(x) - f(x)| dx \to \int_{\mathbb{R}} |f(x)| dx$$

as $n \to \infty$.

Problem 4. Suppose that $f:[0,1] \to \mathbb{R}$ is continuous. Prove that

$$\lim_{n \to \infty} \int_0^1 x^n f(x) dx = 0, \quad \lim_{n \to \infty} n \int_0^1 x^n f(x) dx = f(1).$$

Problem 5. Let $f \in L^1_{loc}(\mathbb{R})$ be such that

$$\int_{|x| \le r} |f(x)| dx \le (r+1)^a,$$

for all $r\geq 0$ and for some $a\in\mathbb{R}.$ Let g be a Lebesgue measurable function such that

 $|g(x)| \le e^{-|x|}.$

Show that

$$x \mapsto f(x)g(tx) \in L^1(\mathbb{R})$$

for any $t \in \mathbb{R} \setminus 0$.