
Lp Spaces

1 The Basics

Let (X,M, µ) be a fixed measure space. If f : X → C is a measurable function on X and 0 < p < ∞, we
define the Lp norm of f to be

∥f∥Lp :=
(∫

X

|f |p dµ
) 1

p

, (1)

where we allow the possibility ∥f∥p = ∞. For each p > 0, we define the Lp space

Lp(X,M, µ) := {f : X → C : f is measurable and ∥f∥p < ∞}. (2)

It is common to denote th space by LP (X,M, µ) by Lp(µ), Lp(X), or even just Lp if the measure or base
set is clear. As before, elements of Lp are equivalence classes of functions equal almost everywhere. Since
any complex function is a linear combination of real functions, we will only consider the case when f is
real-valued. However, all the theorems in this section extend to complex-valued functions. The Lp spaces
are vector spaces since, for f, g ∈ Lp, we have

|f + g|p ≤ (2max{|f |, |g|})p ≤ 2p(|f |p + |g|p)

implying f + g ∈ Lp. For each p > 0, ∥·∥p is a norm on Lp, which we leave as an exercise.
In practice, it is most common to consider only the cases p ≥ 1 so we will do so in this note. The reason

why is that the Lp spaces are Banach spaces for p ≥ 1, which means they are really nice. A Banach space is
a complete normed linear space. The nicest of the Lp spaces is L2 since in this case it can be equipped with
an inner product making it a Hilbert space; that is, a complete normed inner product space. In fact, L2 is
the only Lp space that is a Hilbert space, so in this sense it is special. The reason the Lp spaces for p < 1 are
not Banach spaces is due to the fact that the triangle inequality fails when p < 1.1 The cornerstone of the
theory of Lp spaces is the Hölder inequality. It relies on a very useful inequality for positive real numbers:

Lemma 1 (Young’s Inequality). If a, b ≥ 0 and 0 < λ < 1, then

aλb1−λ ≤ λa+ (1− λ)b

with equality if and only if a = b.

Often times, you will see Young’s inequality presented as

ab ≤ ap

p
+

bq

q
,

where 1
p + 1

q = 1 and a, b ≥ 0. Another useful variant is Cauchy’s inequality with ϵ, which says that for any
a, b and any ϵ > 0 we have

ab ≤ ϵa2 +
b2

4ϵ
.

Using Young’s Inequality, one can prove the Hölder inequality:

1See the beginning of page 182 in Folland.
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Theorem 1 (Hölder’s Inequality). Suppose 1 < p < ∞ and p−1 + q−1 = 1. If f and g are measurable
functions on X, then

∥fg∥1 ≤ ∥f∥p∥g∥q. (3)

In particular, if f ∈ Lp and g ∈ Lq, then fg ∈ L1, and in this case equality holds in (3) if and only if
α|f |p = β|g|q a.e. for some constant α, β ̸= 0.

We call the exponents p, q Hölder conjugates. An important consequence of the Hölder inequality is
Minkowski’s Inequality. It can be viewed as the triangle inequality for Lp spaces.

Theorem 2 (Minkowski’s Inequality). If 1 ≤ p < ∞ and f, g ∈ Lp, then

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Using the dominated convergence theorem, it is not hard to show that the integrable simple functions
are dense in Lp for p ≥ 1. A very useful fact is that C0(R) and C∞

0 (R) are both dense in Lp too.
Up to this point, we have not considered the case p = ∞ since this case is a little more delicate. We

now define the space L∞, which can be seen as the limiting value p = ∞ (see Problem 3 below). If f is a
measurable function on X, define

∥f∥∞ := inf{a ≥ 0 : µ({x : |f(x)| > a}) = 0}, (4)

with the convention that inf ∅ = ∞. The infimum is attained since

{x : |f(x)| > a} = ∪∞
1 {x : |f(x)| > a+ n−1},

and if the sets on the right-hand side are null, so is the one on the left. The value ∥f∥∞ is called the essential
supremum of |f |. We can now define the space

L∞(X,M, µ) := {f : X → C : f is measurable and ∥f∥∞ < ∞}, (5)

with the usual convention that functions are defined a.e. Examining the definitions, we see that f ∈ L∞ if
and only if there is a bounded measurable function g such that f = g a.e. In fact, we can take g = fχE

where E := {x : |f(x)| ≤ ∥f∥∞}. Two remarks are in order:

1. For X and M fixed, L∞(µ) depends on µ only in that µ determines the null sets.

2. It is common to view 1 and ∞ as holder conjugates also, since 1 +∞−1 = 1. The following theorem
justifies this convention.

Theorem 3. (a) If f and g are measurable functions on X, then ∥fg∥1 ≤ ∥f∥1∥g∥∞.

(b) ∥·∥∞ is a norm on L∞.

(c) ∥fn − f∥∞ → 0 iff there exists E ∈ M such that µ(Ec) = 0 and fn → f uniformly on E.

(d) L∞ is a Banach space.

(e) The simple functions are dense in L∞.

As an exercise, it is worthwhile to prove Theorem 3.

2 Inclusions for Lp Spaces

To understand the intuition behind what Lp spaces measure, it is instructive to study the inclusion of various
Lp spaces in each other. In general, we have Lp ̸= Lq for all p ̸= q. To see why, it is helpfu l to consider the
functions fa(x) on (0,∞), where a > 0. By elementary calculus, faχ(0,1) ∈ Lp iff p < a−1 and faχ(1,∞) iff
p > a−1. This suggests two reasons why a function f may fail to be Lp:
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1. |f |p blows up too rapidly near some point, or

2. |f |p fails to decay rapidly enough at infinity.

In the first case, the behavior of |f |p becomes worse as p increases, and in the second case it gets better.
In other words, if p < q, then functions in Lp can be locally more singular than functions in Lq, whereas
functions in Lq can be globally more spread out than functions in Lp. We state three useful results which
follow directly from Hölder’s inequality.

Proposition 1. If 1 ≤ p < q < r ≤ ∞, then Lq ⊂ Lp + Lr; that is, each f ∈ Lq is the sum of a function in
Lp and a function in Lr.

Proposition 2. If 1 ≤ p < q < r ≤ ∞, then Lp ∩ Lr ⊂ Lq and ∥f∥q ≤ ∥f∥λp∥f∥
1−λ
r , where λ ∈ (0, 1) is

defined by
1

q
=

λ

p
+

1− λ

r
.

Proposition 3. If µ(X) < ∞ and 1 ≤ p < q ≤ ∞, then Lp(µ) ⊃ Lq(µ) and ∥f∥p ≤ ∥f∥qµ(X)
1
p−

1
q .

Propositions 1 and 2 are covered in the homework. As an additional exercise, it is helpful to prove
Proposition 3.

2.1 Some Remarks

Before we proceed, some remarks about the significance of Lp spaces will be useful. The three most important
Lp spaces are L1, L2, and L∞; however, L1 and L∞ can still be rather pathological. As mentioned before,
L2 is special because it is a Hilbert space and L∞ is important because of its relation to the topology of
uniform convergence. Due to the pathological nature of L1 and L∞, it is often more fruitful to deal with
intermediate Lp spaces. One manifestation of this is the duality theory of Lp spaces, and another is that
many operators of interest in Fourier analysis and differential equations are bounded (i.e. continuous) on Lp

for p ∈ (1,∞) but not on L1 or L∞.

3 Useful Inequalities

In this section, we state some useful inequalities that are helpful on qual problems and in research. The
following inequality is a great exercise:

Lemma 2 (Chebyshev’s Inequality). If f ∈ Lp for p ∈ [1,∞), then for any α > 0 we have

µ({x : |f(x)| > α}) ≤

(
∥f∥p
α

)p

.

We have already learned of Minkowski’s inequality, which states that the Lp norm of a sum is less than
the sum of the Lp norms. We can generalize this to the case that sums are replaced by integrals.

Theorem 4 (Minkowksi’s Inequality for Integrals). Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure
spaces, and let be an (M⊗N )-measurable function on X × Y .

(a) If f ≥ 0 and 1 ≤ p < ∞, then(∫ (∫
f(x, y) dν(y)

)p

dµ(x)

) 1
p

≤
∫ (∫

f(x, y)p dµ(x)
) 1

p

dν(y).

(b) If 1 ≤ p < ∞, f(·, y) ∈ Lp(µ) for a.e. y, and the function y 7→ ∥f(·, y)∥p is in L1(ν), then f(x, ·) ∈
L1(ν) for a.e. x and the function x 7→

∫
f(x, y) ν(y) is in Lp(µ), and∥∥∥∥∫ f(·, y) dν(y)
∥∥∥∥
Lp(µ)

≤
∫

∥f(·, y)∥Lp(µ) dν(y).

Theorem 4(b) gives a nice expression for the p-norm of an integral.
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3.1 Additional Material

To close this note, we mention that some useful material for anyone interested in analysis is contained in
sections 6.4 and 6.5 in Folland. Section 6.4 deals with distribution functions and weak Lp, while section 6.5
proves some useful interpolation inequalities for Lp spaces. Both are important in, for example, the regularity
theory for differential equations and Fourier analysis. However these sections are a little bit outside the scope
of the course. At the very least, it is worthwhile to be aware that the results in those sections exist.

4 Problems

1. All of the suggested exercises in the notes.

2. When does equality hold in Minkowski’s inequality? (The answer is different for p = 1 and for
1 < p < ∞. What about p = ∞?)

3. If f ∈ Lp ∩ L∞ for some p < ∞, so that f ∈ Lq for all q > p, then ∥f∥∞ = limq→∞∥f∥q.

4. Suppose 1 ≤ p < ∞. If ∥fn−f∥p → 0, then fn → f in measure, and hence some subsequence converges
to f a.e. On the other hand, if fn → f in measure and |fn| ≤ g ∈ Lp for all n, then ∥fn − f∥p → 0.

Reference: Real Analysis: Modern Techniques and Their Applications, 2nd ed., Gerald B. Folland.
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