
The Radon-Nikodym Theorem

1 Signed Measures

Let (X,M) be a measure space. A signed measure on (X,M) is a function ν : M → [−∞,∞] such that

(i) ν(∅) = 0;

(ii) ν assumes at most one of the values ±∞;

(iii) If {Ej} is a sequence of disjoint sets in M, then ν(∪∞
1 Ej) =

∑∞
1 ν(Ej), where the latter sum converges

absolutely if ν(∪∞
1 Ej) < ∞.

Thus, every measure has a signed measure. Measures are sometimes referred to as positive measures when
there is possibility for confusion. Two important examples of signed measures are as follows: If µ1, µ2 are
signed measures and at least one of them is finite, then ν = µ1 − µ2 is a signed measured. Also, if µ is a
measure on M and f : X → [−∞,∞] is a measurable function such that at least one of

∫
f+ or

∫
f− is finite

(in which case, we say that f is extended µ-integrable), then ν(E) :=
∫
E
f dµ is a signed measure. In fact,

these are the only examples since every signed measure can be represented in one of these two forms, as we
will soon see. Arguing precisely as for positive measures, one can shows that signed measures are continuous
from above and below.1

If ν is a signed measure on (X,M), a set E ∈ M is called positive for ν if ν(F ) ≥ 0 for all F ∈ M such
that F ⊂ E. Negative sets and null sets are defined similarly, except we require ν(F ) ≤ 0 or ν(F ) = 0,
respectively. For example, if

ν(E) :=

∫
E

f dµ,

then a set E is positive when f ≥ 0, negative when f ≤ 0, and null when f = 0 µ-a.e. on E. Using the
definitions, it is not hard to show that any measurable subset of a positive set is positive, and the union of
any countable family of positive sets is positive. An analogous result holds for negative and null sets.

The two big theorems for signed measures are the decomposition theorems. The first is the Hahn De-
composition Theorem and says that, given a signed measure, X can be decomposed as the disjoint union of
a positive and negative set:

Theorem 1 (Hahn Decomposition Theorem). If ν is a signed measure on (X,M), then there exist a positive
set P and a negative set N for ν such that X = P ∪N and P ∩N = ∅. If P ′ and N ′ is another pair, then
P△P ′ and N△N ′ are ν-null.

We call the decomposition in Theorem 1 the Hahn decomposition for ν. It is not usually unique since
we can alter P and N on ν-null sets, but it leads to a canonical representation of ν as the difference of two
positive measures. This is called the Jordan decomposition for ν.

To state the theorem we need a couple of definitions. We say that two signed measures µ and ν on
(X,M) are mutually singular, or that ν is singular with respect to µ (or vice versa) if there exist E,F ∈ M
such that E ∩ F = ∅, X = E ∪ F , E is µ-null, and F is ν-null. Informally, if µ and ν are mutually singular
their supports do not intersect. It is common to write µ ⊥ ν.

Theorem 2 (Jordan Decomposition Theorem). If ν is a signed measure, there exist unique positive measures
ν+ and ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.

1I encourage you to work this out.
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We call the measures ν+ and ν− the positive variation and negative variation of ν, respectively, and
ν = ν+ − ν− is called the Jordan decomposition of ν. The total variation of ν is the measure |ν| given by

|ν| = ν+ + ν−.

One can show that E ∈ M is ν-null iff |ν|(E) = 0, and ν ⊥ µ iff |ν| ⊥ µ iff ν− ⊥ µ and ν− ⊥ µ.2 Note that
ν is bounded above by ν+ and below by −ν−. In particular, if the range of ν is contained in R, then ν is
bounded. We also note that ν is of the form ν(E) =

∫
E
f dµ, where µ = |ν|, f = χP − χN , and X = P ∪N

is a Hahn decomposition for ν. Integration with respect to a signed measure ν is defined in the obvious way.
We set

L1(ν) := L1(ν+) ∩ L1(ν−)

and ∫
f dν =

∫
f dν+ −

∫
f dν− for f ∈ L1(ν).

A signed measure is called finite (resp, σ-finite) if |ν| is finite (resp. σ-finite).

2 The Lebesgue-Radon-Nikodym Theorem

We can now discuss the Lebesgue-Radon-Nikodym Theorem, which is often simply referred to as the Radon-
Nikodym Theorem. Put simply, the Radon-Nikodym Theorem can be viewed as differentiation theorem for
measures.

Suppose that ν is a signed measure and µ is a positive measure on (X,M). We say that ν is absolutely
continuous with respect to µ and write ν ≪ µ if ν(E) = 0 for every E ∈ M for which µ(E) = 0. It is a good
exercise to show that ν ≪ µ iff |ν| ≪ µ iff ν+ ≪ µ and ν− ≪ µ. Absolutely continuity is, in some sense, the
antithesis of mutual singularity. To see this, note that if ν ⊥ µ and ν ≪ µ, then ν = 0. One can also extend
the definition of absolute continuity to the case when µ is a signed measure, but we will not need to do so
for our purposes.

So far, it may not be clear what the absolute continuity condition has to do with continuity. The next
two results make the connection explicit.

Theorem 3. Let ν be a finite signed measure and µ a positive measure on (X,M). Then ν ≪ µ iff for
every ϵ > 0 there is a δ > 0 such that |ν(E)| < ϵ whenever µ(E) < δ.

If µ is a measure and f is an extended µ-integrable function, the signed measure ν defined by ν(E) =∫
E
f dµ is absolutely continuous with respect to µ and finite iff f ∈ L1(µ). Since any complex function f is

a linear combination of real functions, the following corollary holds for all complex f ∈ L1(µ):

Corollary 1. If f ∈ L1(µ), for every ϵ > 0 there is a δ > 0 such that∣∣∣ ∫
E

f dµ
∣∣∣ < ϵ whenever µ(E) < δ.

The corollary above is often referred to as absolute continuity of the integral. For short, we will write

dν = f dµ

to denote the relationship ν(E) =
∫
E
fdµ.

Theorem 4 (Lebesgue-Radon-Nikodym Theorem). Let ν be a σ-finite signed measure and µ a σ-finite
positive measure on (X,M). There exist unique σ-finite signed measures λ, ρ on (X,M) such that

λ ⊥ µ, ρ ≪ µ, and ν = λ+ ρ.

Moreover, there is an extended µ-integrable function f : X → R such that dρ = fdµ and any two such
functions are equal µ-a.e.

2See Homeowrk 8.
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We call the decomposition ν = λ+ρ the Lebesgue decomposition of ν with respect to µ. In the case ν ≪ µ,
Theorem 4 says that dν = f dµ for some f . This result is often called the Radon-Nikodym Theorem and f
is called the Radon-Nikodym derivative of ν with respect to µ. We denote the Radon-Nikodym derivative
f = dν

dµ by

dν =
dν

dµ
dµ.

One can check that
d(ν1 + ν2)

dµ
=

dν1
dµ

+
dν2
dµ

.

The following chain rule is very useful:

Proposition 1 (Chain Rule). Suppose that ν is a σ-finite signed measure and µ, λ are σ-finite measure on
(X,M) such that ν ≪ µ and µ ≪ λ.

(a) If g ∈ L1(ν), then g dν
dµ ∈ L1(µ) and ∫

g dν =

∫
g
dν

dµ
dµ.

(b) We have ν ≪ λ and
dν

dλ
=

dν

dµ

dµ

dλ
λ− a.e.

Corollary 2. If µ ≪ λ and λ ≪ µ, then

dλ

dµ

dµ

dλ
= 1 a.e. with respect to µ or λ.

An important non-example is as follows. Let µ be the Lebesgue measure and ν the point mass at zero
on (R,BR). Then ν ⊥ µ. However, the Radon-Nikodym derivative dν

dµ does not exist. This non-existent
derivative is more commonly known as the Dirac δ-function.

3 Problems

1. Prove Proposition 3.1 on page 86 of the textbook: Let ν be a signed measure on (X,M). Then

ν
(⋃
n∈N

En

)
= lim

n→∞
ν(En) and ν

(⋂
n∈N

Fn

)
= lim

n→∞
ν(Fn),

for any increasing sequence (En)n∈N of measurable sets and any decreasing sequence (Fn)n∈N of mea-
surable sets with ν(F1) < ∞.

Solution. First, suppose {En} ⊂ M is an increasing sequence of sets. Set E0 = ∅. Then, by disjoint
additivity of ν and the well-definedness (since ν takes on only one of the values ±∞) and absolute
convergence (if finite) of the sum

∑∞
1 ν(En \ En−1)

ν(

∞⋃
1

En) = ν(

∞⋃
1

En \ En−1)

=

∞∑
1

ν(En \ En−1)

= lim
n→∞

n∑
1

ν(Ej \ Ej−1)

= lim
n→∞

ν(En)

3



since En =
⋃n

1 Ej \ Ej−1. Suppose now that {En} is a decreasing sequence of sets and that ν(E1)
is finite. For each n, set Fn = E1 \ En and note that {Fn} ⊂ M is an increasing sequence of sets.
Moreover, ν(E1) = ν(Fn) + ν(En) for each n, where the sum is well defined since ν takes on only one
of the values ±∞. Since

⋃∞
1 Fn = E1 \ (

⋂∞
1 En),

ν(E1) = ν(

∞⋂
1

En) + ν(

∞⋃
1

Fn)

= ν(

∞⋂
1

En) + lim
n→∞

ν(Fn)

= ν(

∞⋂
1

En) + lim
n→∞

[ν(E1)− ν(En)].

Once again, each of the sums are well-defined by the properties of the signed measure ν. Since ν(E1)
is finite, we may subtract it from each side of the equality above to get the desired result.

2. Let ν be given by

ν(E) =

∫
E

f dµ, E ∈ M,

for a positive measure µ on (X,M) and an extended µ-integrable function f . Determine ν± and |ν|
in terms of f and µ.

Solution. To determine ν+, ν−, and |ν|, we need a Hahn decomposition for ν. Set

P := {x ∈ X : f(x) ≥ 0} and N := {x ∈ X : f(x) < 0}.

Then X = P ∪N and P ∩N = ∅. Furthermore,

ν(P ) =

∫
P

fdµ ≥ 0 and ν(N) =

∫
N

fdµ ≤ 0,

so X = P ∪N is a Hahn decomposition for ν. For any E ∈ M, we have

ν+(E) = ν(E ∩ P ) =

∫
E∩P

fdµ =

∫
E

f+dµ.

Similarly,

ν−(E) = −ν(E ∩N) = −
∫
E∩N

fdµ =

∫
E

f−dµ.

Then

|ν|(E) = ν+(E) + ν−(E)

=

∫
E

f+dµ+

∫
E

f−dµ

=

∫
E

(f+ + f−)dµ

=

∫
E

|f |dµ.

3. Let (X,M, µ) be a finite measure space, N a sub-σ-algebra of M, and ν = µ|N . If f ∈ L1(µ), there
exists g ∈ L1(ν)(thus g is N -measurable) such that

∫
E
fdµ =

∫
E
gdν for all E ∈ N ; if g′ is another

such function then g = g′ ν-a.e.. (In probability theory, g is called the conditional expectation of f on
N .)
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Solution. Define λ : N → (−∞,∞) by λ(E) =
∫
E
fdµ for each E ∈ N . Then λ is a signed measure on

N . Indeed, λ(∅) = 0 (since the integral of f over any µ-null set is zero), |λ(E)| < ∞ for each E ∈ N ,
and for any pairwise disjoint collection {Ej} ⊂ N we find λ(

⋃∞
1 Ej) =

∑∞
1 λ(Ej) by properties of

the integral. Moreover f ∈ L1(µ) so that the sum converges absolutely. Since ν = µ|N , we see that
λ ≪ ν. Hence, by the Radon-Nikodym theorem there is an extended ν integrable function g such that
dλ = gdν. That is, for each E ∈ N , λ(E) =

∫
E
fdµ =

∫
E
gdν. Since λ is finite and X ∈ N , it must be

that
∫
E
g±dν < ∞. In particular, g ∈ L1(ν). Uniqueness is also guaranteed by the Radon-Nikodym

theorem.

4. Let X = [0, 1], M = B[0,1], let m be the Lebesgue measure, and let µ be the counting measure on M.
Show that:

(a) m ≪ µ but dm ̸= f dµ for any f .

(b) The measure µ has no Lebesgue decomposition with respect to m.

Solution. (a) If E is µ-null, then E = ∅ by definition of the counting measure. Hence, m ≪ µ.
Suppose dm = fdµ for some f ∈ L1(µ). Fix any x ∈ [0, 1]. Then

0 = m({x}) =
∫
x

f dµ = f(x).

Hence, f ≡ 0 which is impossible since m([0, 1]) = 1. It follows that dm ̸= f dµ for any f ∈ L1(µ).

(b) Suppose µ has the Lebesgue decomposition

µ = λ+ ρ

where λ ⊥ m and ρ ≪ m. Then

∞ = µ([0, 1]) = λ([0, 1]) + ρ([0, 1]) = ρ([0, 1]),

where the last equality follows from the fact that λ ⊥ m. Since ρ ≪ m, we can write

ρ([0, 1]) =

∫
[0,1]

f dm

where f ∈ L1(m). Hence, the right-hand side is finite which contradicts the equalities derived
above.

Reference: Real Analysis: Modern Techniques and Their Applications, 2nd ed., Gerald B. Folland.
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