Bonding, Shape, and Polarity

UCI Chem 51A Dr. Link

Oops!

There are two mistakes in the vocal narration (bonding section). Can you find them?

Goals

After this lesson you should be able to:

- Predict geometries around atoms in a molecule.
- Predict polarity based on bonding and shape.
 - Identify types of bonds in a molecule.
- Identify types of orbitals used to make bonds.

Bonding Review

- In organic chemistry we generally deal with covalent bonds (both polar and nonpolar), though ionic compounds show up sometimes.
- Covalent bonds: Atoms are sharing one or more pairs of electrons
- Polar covalent bonds: For our purposes, an electronegativity difference of 0.4 or less can be considered nonpolar. Differences up to 1.8 are considered polar. Above 1.8, bonds are considered ionic.

Ionic

Noripolar

VSEPR Review

Valence Shell Electron Pair Repulsion: Regions of electron density around atoms repel each other and determine geometry around that atom.

VSEPR Table

e- density regions	Bonded atoms	e- geometry	Geometry	Bond Angles
2	2	planar	planar	180°
3	2	trigonal planar	bent	120°
3	3	trigonal planar	trigonal planar	120°
4	2	tetrahedral	bent	109.5°
4	3	tetrahedral	trigonal pyramidal	109.5°
4	4	tetrahedral	tetrahedral	109.5°

Geometry Examples C_2H_2 BF₃ CH_4 NH₃ H_2O

Drawing Tetrahedral Structures: Wedges and Dashes

- Tetrahedral structures have two bonded groups in one plane and two in another.
- How can we represent this in drawings?
 - Wedge: Coming forward out of board/ paper/screen
 - Dash: Going back behind board/paper/ screen

Shape and Polarity

How can we predict a molecule's polarity?

• To be polar:

- 1. A molecule must have at least one polar bond (dipole moment).
- 2. The dipole moments must not cancel out.

Polar or Nonpolar?

Why Is Polarity of Molecules Important?

- Molecule polarity determines intermolecular forces!
- Intermolecular forces determine physical properties!

Common Types of Bonds in OChem

- <u>Sigma bonds:</u> Formed by direct overlap of two orbitals. Can be s-s, s-p, s-hybrid, hybrid-hybrid
- <u>Pi bonds:</u> Formed by indirect (sideways) overlap of two orbitals. Usually p-orbitals.
- Atomic orbital shapes:

Bonding and Hybrid Orbitals

- We often use hybrid orbitals to describe bonding.
- Quick review of hybrid orbitals.
 - # of orbitals in = # of orbitals out

Identifying Shape, Bonding, and Hybrid Orbitals

Identifying Shape, Bonding, and Hybrid Orbitals

Wrapping Up

- Practice determining geometries around atoms in Lewis structures.
- Practice determining whether a molecule is polar.
- Practice identifying types of bonds and from which types of orbitals the bonds are formed.