RULES

- Be respectful
- Participate
- It's ok to talk and to move around (on topic please)

Warm-Up Question 1

Is this a valid Lewis structure for O_2 ?

- A. Yes
- B. No
- C. I have no idea.

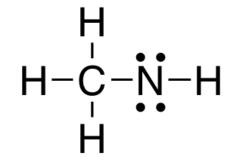
Warm-Up Question 2

Choose the answer where all valence electrons are correct.

A.
$$H = 1$$
, $C = 4$, $N = 3$

B.
$$C = 4$$
, $Br = 7$, $Al = 2$

C.
$$H = 1$$
, $O = 6$, $Si = 5$

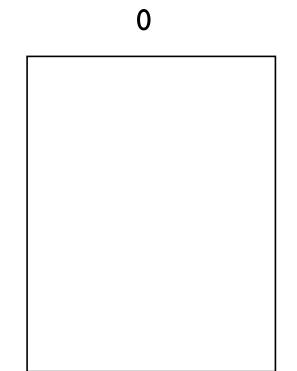

D.
$$CI = 7$$
, $N = 5$, $B = 3$

E. None of these

Warm-Up Question 3

The formal charge on N in this Lewis structure is

D. I have no idea.


Formal Charge Practice

Add formal charges wherever they are needed.

Formal Charge Patterns

Fill in the blanks.

What is the common factor in each column?

$$Z = \dot{C} - Z$$

Z = generic atom

Homework Formal Charge Patterns: N

Do this on your own. Answer posted at beginning of next class meeting.

Homework Formal Charge Patterns: O

Do this on your own. Answer posted at beginning of next class meeting.

Homework Formal Charge Patterns: Halogens (X)

Do this on your own. Answer posted at beginning of next class meeting.

Identify electron geometry and molecule or atom geometry.

$$PBr_3$$
 H_2S AIH_3

What type of hybrid orbital would you need in each situation?

- Making a tetrahedral shape:
- Making a double bond between C and O:
- Making a linear shape:
- Making a trigonal pyramidal shape:
- Making a C-N triple bond:
- Making a trigonal planar shape:

http://www.youtube.com/watch?v=S|dllffWUqg