Nucleophilicity/Basicity Clarification

Nucleophile	Relative Rate	Strength	
HSO ₄ -, H ₂ PO ₄ -, RCOOH	<0.01	Very Weak	
ROH	_	\\/\all	
H ₂ O, NO ₃ -	100	Weak	
F ⁻	500	Fair	
Cl ⁻ , RCO ₂ ⁻	20 × 10 ³		
NH ₃ , (CH ₃) ₂ S	300 × 10 ³		
N ₃ -, Br-	600 × 10 ³	Good	
OH⁻, CH₃O⁻	2 x 10 ⁶	Good	
CN ⁻ , HS ⁻ , RS ⁻ , (CH ₃) ₃ P, I ⁻ , H ⁻	>100 x 10 ⁶	Very Good	

Base	pKa Conj. Acid
HSO ₄ -, H ₂ PO ₄ -, RCOOH, Cl ⁻ , l ⁻ , Br ⁻	-11 to -3
ROH	-2
H ₂ O, NO ₃ -	-1.5
F ⁻	3
RCO ₂ -, N₃-	5
NH ₃ , (CH ₃) ₂ S CN ⁻ , HS ⁻ , RS ⁻ , (CH ₃) ₃ P,	7-9
OH⁻, CH₃O⁻	15-17
H-, R-	22-50

to con a

A Little More on Carbocations and Alkenes

Choose the most stable carbocation. Complete
$$H_3C-C-N(CH_3)_2$$
 Et- $C-CH_3$ Et- $C-CH_3$ CH $_3$

$$H_3C-\overset{\bigoplus}{C}-N(CH_3)_2$$

 $\overset{\vdash}{C}H_3$

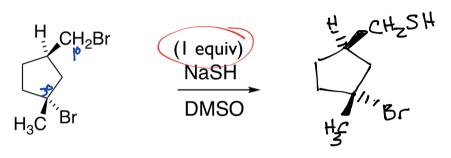
Choose the most stable alkene.

Practice Problems

Determine three unique sets of reagents for substitution reactions that for the following compound. Choose reagents that DO NOT lead to elimination products.

- CH3
 Pick any 3 strong nucleophiles
 H3C-C-Br
 Hwat are also very week bases!
 - · I and Br would be good.
 - · azide ion and actak ion would also work
 - · Definitely use polar aprofic Solvent to avoid EI

Practice Problems


Determine three unique sets of reagents for elimination reactions that for the following compound. Choose reagents that DO NOT lead to CH₃ Pick good bases that are poor nucleophiles.

H substitution products.

- · The three non-nucleophilic bases that you know would all work.
 - t-butoxide
 - DBU
 - DBN
 - · Avoid Polar protic solvental.

-> Sul/EI are ALWAYS in competition! Avoid them it you have a choice.

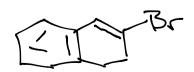
Practice Problems

I equivalent means 1:1 mole ratio of electrophile and NaSH.

Challenge Problem

Determine the relative stereochemistry of menthyl chloride and neomenthyl chloride using the reaction data above and the following information:

- I) Menthyl chloride and neomenthyl chloride differ only in the stereochemistry of the carbon bearing the chlorine.
- 2) Menthyl chloride exists in the most stable cyclohexane configuration.


SC.

neomenthyl chlorid

Challenge Problems

Would you expect any elimination products to form? How? Why?

Yes. Sal and El are ALWAYS in competition!

Challenge Problem

Can you find a set of reagents for this transformation? What competitions do you need to be concerned with?

This is a VERY difficult problem (may harder than anything on exam)

Want substitution at 1° carbon and nothing else. No reagents you know at this point would work. Hydroxide for would give substitution at only the 1° carbon, but elimination at the 3° carbon and a B-hydrogen would be a significant concern.