Identify the type of reaction.

Enthalpy Change

Calculate ΔH for the reaction.

$$CH_3CH_3 + Br_2 \longrightarrow CH_3CH_2Br + HBr$$

A multi-step problem

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} \\ \\$$

At equilibrium, the product mixture contains about 30% reactant and 70% product.

- A. What type of intermediate is present? Is this a polar or radical reaction?
- B. Draw curved arrows to indicate electron movement in each step.
- C. Calculate K_{eq} for the reaction.
- D. Calculate ΔG° for the reaction.

True or false?

A.True
B. False
C. No Idea

- I. The enthalpy of a reaction is the sole determinant of whether it will occur or not.
- 2. Kinetics is the study of chemical reaction rates.
- 3. An exergonic reaction will always occur during the lifespan of the standard human being.
- 4. Thermodynamics is the study of the energies of structures that are represented by the wells on reaction coordinate diagrams.
- 5. A reaction coordinate diagram is used to visualize the change in the internal energy of chemical structures that occurs during chemical reactions.

Explain!

The acid-base chemistry reaction barium hydroxide with ammonium thiocyanate (NH₄SCN) in water creates barium thiocyanate, ammonia, and water. The reaction is highly favorable, but also so endothermic that the solution cools to such an extent that a layer of frost forms on the reaction vessel. Explain how an endothermic reaction can be favorable.

Predict the sign of ΔG .

ΔG	ΔΗ	Т	ΔS
	-(large)	small	-(small)
	-(large)	small	+(small)
	-(small)	large	-(large)
	-(small)	large	+(large)

General BDE Trends

• Describe general trends for bond dissociation energies.

Calculate K_{eq}. Are products or reactants favored?

If the ΔG° for a reaction is -4.5 kcal/mol at 298 K, what is K_{eq} for this reaction?