Identify the type of reaction.

$$\frac{(CH_3)_3CO^{-}}{(CH_3)_3COH}$$

Enthalpy Change

Calculate ΔH for the reaction.

CH₃CH₃ + Br₂
$$\longrightarrow$$
 CH₃CH₂Br + HBr

A multi-step problem

At equilibrium, the product mixture contains about 30% reactant and 70% product.

A. What type of intermediate is present? Is this a polar or radical reaction?

complexed

B. Draw curved arrows to indicate electron movement in each step.

C. Calculate K_{eq} for the reaction.

D. Calculate ΔG° for the reaction.

True or false?

B. False C. No Idea

A. True

- 1. The enthalpy of a reaction is the sole determinant of whether it will occur or not.
- 2. Kinetics is the study of chemical reaction rates.
- 3. An exergonic reaction will always occur during the lifespan of the standard human being.
- 4. Thermodynamics is the study of the energies of structures that are represented by the wells on reaction coordinate diagrams.
- 5. A reaction coordinate diagram is used to visualize the change in the internal energy of chemical structures that occurs during chemical reactions.

Explain!

The acid-base chemistry reaction barium hydroxide with ammonium thiocyanate (NH₄SCN) in water creates barium thiocyanate, ammonia, and water. The reaction is highly favorable, but also so endothermic that the solution cools to such an extent that a layer of frost forms on the reaction vessel. Explain how an endothermic reaction can be favorable.

$$Ba(OH)_2 + 2NH_4SCN \longrightarrow 2NH_3 + 2H_2O + Ba(SCN)_2$$

 $\triangle H = +$, but $\triangle S = -$
 $\triangle G$ must be $-$ if rxn is sportuneaus
 $\triangle G = \triangle H - T\Delta S$

Predict the sign of ΔG . Completed in class

ΔG	ΔΗ	Т	ΔS
	-(large)	small	-(small)
	-(large)	small	+(small)
	-(small)	large	-(large)
	-(small)	large	+(large)

General BDE Trends

- Describe general trends for bond dissociation energies.
- · Stronger bonds = greater BDE

```
→ shorter bond longth = stronger band

* (-F> C-CI> C-Br > C-I

* C-C < C=C < C=C

(when breaking all bonds)
</p>
```

Calculate Keq. Are products or reactants favored?

If the ΔG° for a reaction is -4.5 kcal/mol at 298 K, what is K_{eq} for this reaction?

$$\triangle G = -RT \ln keg$$

$$- U.5 = - (8.514 + 5/mol k)(298 k) \ln keg$$

$$e^{-41.5} = keg$$

$$1.0 = keg$$