Draw the reaction coordinate diagram.

One Step
$\Delta \mathrm{G}=+\mathrm{I} 5$
$E \mathrm{Ea}=+30$

Two Steps
$\Delta \mathrm{G}=-5$
$\Delta G_{1}=+12$
$\Delta G_{2}=-17$
$\mathrm{E}_{\mathrm{a} 1}=+18$
$\mathrm{E}_{\mathrm{a} 2}=+\mathrm{I} 0$

Reaction Rates

$$
\text { rate }=\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right] \quad \text { rate }=\left[\mathrm{CH}_{3} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]
$$

Overall rate

Double [RX]

Half [OH^{-}]
Double all reactant
 conc.

Half solvent amount

Triple solvent amount

Name the alkyl halide.

completed
alass

Identify the type of solvent.

$$
\begin{aligned}
& \text { completed } \\
& \text { is class }
\end{aligned}
$$

What concepts from previous chapters are coming up so far in Chapter 7?

- polarity
- resonance structures
- Kinetics
- thermodynamics
- stereochemistry...

Choose the stronger nucleophile.

Choice
Why?
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{-} \quad \mathrm{OH}^{-}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}^{-}$

$\mathrm{CH}_{3} \mathrm{NH}_{2}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
class
p.a.
P.P. $\quad \mathrm{I}^{-}$
Cl^{-}
Cl^{-}

Nucleophile Breakdown

Fantastic!	Good	Not so good
RS^{-}	Br^{-}	F^{-}
NC^{-}	$\mathrm{R}_{2} \mathrm{~S}$	$\mathrm{HCO}_{3}{ }^{-}$
I^{-}	NR_{3}	$\mathrm{R}_{2} \mathrm{O}$
PR_{3}	Cl^{-}	
$\mathrm{R}_{3} \mathrm{C}^{-}$	$\mathrm{RCO}_{2^{-}}$	
$\mathrm{R}_{2} \mathrm{~N}^{-}$	N_{3}	
$\mathrm{RC} \equiv \mathrm{C}^{-}$		
RO^{-}		

* Also good bases. Making bond with C will be in competition with stealing H

True or False?

- All good bases are good nucleophiles.

Mostly true. Exceptions are non-nucleophilic bulky bases such as t-butoxide, DBN , or DBU. More on these in ch 8 .

- All good nucleophiles are good bases.

False. There are several good nucleophiles ore par bases.
see previous slide for examples.

We need some volunteers!

Acting art nucleophiles and solvents is fun!.

Draw the expected substitution products.

Reaction of cyanide ion with n-iodoheptane

Reaction of ethanol with 2-bromo-2-methylbutane

