$S_{N} 1$ vs. $S_{N} 2$

UCI Chem 51A Dr. Link

Goals

* After this lesson you should be able to
* Identify reaction conditions that favor either $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ mechanisms
* Predict the outcome of a nucleophilic substitution reaction based on the electrophile, nucleophile, and reaction conditions

Sn2 Summary

* Rate = 2nd order
* Mechanism = 1 step
* Electrophile: Me> $1^{\circ}>2^{\circ}, n 03^{\circ}$
* $L G=\operatorname{good} L G$ required
* Nu = strong Nu favors SN2
* Solvent = polar aprotic favors $S_{N} 2$
* Stereochemistry = backside attack, inversion

Nice summary video from University of Surrey!
$h t t p: / / w w w y$ youtube.com/watch?NR=1\&feature=endscreensv=h5xvaP6bIZI

Snl Summary

* Rate = 1st order
* Mechanism $=2$ steps
* Electrophile: benzyl, ally, $3^{\circ}>2^{\circ} \ldots$
* no 1°, no methyl
* $L G=\operatorname{good} L G$ required
* Nu = weak Nu favors S_{N} I
* Solvent = polar protic solvent favors S_{N} I
* Stereochemistry = racemization of stereocenter

University of Surrey summary video
http://www.youtube.com/watch? $V=J m c V g E 2 W K B E ~$

What Happens In A Flask?

* LOTS of molecules in a typical reaction * Do they all follow the same path?
* Not necessarily!

We choose conditions that favor one path and disfavor others!

Which Mechanism Is It?

* Depends on
* Electrophile
* Nucleophile
* Solvent
* Both $S_{N} 1$ and $S_{N} 2$ require good LG

The Electrophilic Carbon \&RGroups

Primary/Methyl

$$
S_{N} 1 \quad S_{N} 2
$$

Allylic
$\mathrm{S}_{\mathrm{N}} 1 \quad \mathrm{~S}_{\mathrm{N}} 2$

Secondary
$\mathrm{S}_{\mathrm{N}} 1 \quad \mathrm{~S}_{\mathrm{N}} 2$
Benzylic
Tertiary

SN1 Sn2

$\mathrm{S}_{\mathrm{N}} 1 \quad \mathrm{~S}_{\mathrm{N}} 2$

The Nucleophile

* Strong Nu favors Sn2
* Generally charged!
* Weak Nu favors S_{N} I
* $\mathrm{S}_{\mathrm{N}} 2$ slower if Nu is weak, allowing time for $S_{N} 1$ to happen
* Generally not charged or weaker of the charged Nu

The Solvent

* Polar aprotic solvent favors SN2
* Polar protic solvent favors S_{N} I
* Lowers Ea for carbocation formation
* Disfavors SN $^{2} 2$ because of solvation of Nu

Examples

A Glimpse of Your Future: Synthesis

* How could we make this molecule?

Wrapping Up

* Practice predicting the outcome of nucleophilic substitution reactions
* Practice deciding what types of reaction condition and reactants should be used to favor one type of substitution over another
* Practice working backward from products to reactants

