

* After this lesson you should be able to

Identify reaction conditions that favor either S_N1 or S_N2 mechanisms

Predict the outcome of a nucleophilic substitution reaction based on the electrophile, nucleophile, and reaction conditions

S_N2 Summary

- * Rate = 2nd order
- Mechanism = 1 step
- * Electrophile: Me>1°>2°, no 3°
- * LG = good LG required
- * Nu = strong Nu favors S_N2
- Solvent = polar aprotic favors S_N2
- * Stereochemistry = backside attack, inversion

Nice summary video from University of Surrey! http://www.youtube.com/watch?NR=1&feature=endscreen&v=h5xvaP6blZ1

S_N1 Summary

- * Rate = 1st order
- * Mechanism = 2 steps
- * Electrophile: benzyl, ally, 3° > 2°...
 - * no 1°, no methyl
- * LG = good LG required
- Nu = weak Nu favors S_N1
- Solvent = polar protic solvent favors S_N1
- Stereochemistry = racemization of stereocenter

University of Surrey summary video http://www.youtube.com/watch?v=JmcVgE2WKBE

What Happens In A Flask?

* LOTS of molecules in a typical reaction

* Do they all follow the same path?

* Not necessarily!

We choose conditions that favor one path and disfavor others!

The Nucleophile

* Strong Nu favors S_N2

* Generally charged!

Weak Nu favors S_N1

 S_N2 slower if Nu is weak, allowing time for S_N1 to happen

 Generally not charged or weaker of the charged Nu

* Polar aprotic solvent favors S_N2

* Polar protic solvent favors S_N1

* Lowers E_a for carbocation formation

* Disfavors S_N2 because of solvation of Nu

Wrapping Up

- * Practice predicting the outcome of nucleophilic substitution reactions
- Practice deciding what types of reaction condition and reactants should be used to favor one type of substitution over another
- * Practice working backward from products to reactants