Intermolecular Forces & Physical Properties

UCI Chem 51A Dr. Link

Goals

- After this lesson you should be able to:
 - Determine what intermolecular forces are present for a sample of a given molecule
 - © Compare physical properties for molecules base on structures

Compare Boiling Points

Intermolecular forces determine properties!

Intermolecular Forces

- INTERACTIONS BETWEEN MOLECULES!
 - van der Waal's forces (AKA London forces, AKA induced dipole interactions)
 - dipole-dipole interactions
 - hydrogen bonding

van der Waal's Forces

van der Waal's Forces

van der Waal's Forces

ALL compounds exhibit van der Waal's forces!

Factors Affecting vdW

- Polarizability: Measure of how the electron cloud around an atom (or molecule) reacts to changes in its electronic environment
- Translation: How "smooshy" is the e-cloud?
 - Surface area!

Greater surface area = stronger vdW forces

Dipole-Dipole Interaction

Dipole-dipole interaction: electrostatic interaction between two molecules that have permanent dipoles

Hydrogen Bonding

- THERE ARE NO REAL "BONDS" IN HYDROGEN BONDING!!!
- REALLY strong dipole interaction

Hydrogen Bonding Details

- Hydrogen bonding: electrostatic attraction between an H-atom bonded to O, N, or F* and a lone pair on O, N, or F* in another molecule

 NH_3

*For F, only H-F

IMF Summary

- van der Waal's: temporary (induced) dipoledipole interaction
- Dipole-dipole interaction: interaction between permanent dipoles
- Mydrogen bonding: interaction between REALLY strong dipoles (O-H, N-H)

IMFs and Physical Properties

- IMFs control physical properties!
- Greater/stronger IMFs = higher BP, MP
- IMFs control solubility!

Phase Transition: Boiling

- Boiling point (simple def.): temperature at which liquid is converted to gas
- What does this have to do with IMFs?

Phase Transition: Melting

- Melting point (simple def.): temperature at which solid is converted to liquid
- What does this have to do with IMFs?

$$O \longrightarrow O$$
 $O \longrightarrow O$ $O \longrightarrow$

Solubility

Like dissolves like. What does that mean?

How are IMFs involved?

hexane (C ₆ H ₁₄)	water (H ₂ O)
CH ₃ OH	CH₃OH

 C_4H_{10} C_4H_{10}

Wrapping Up

- Practice identifying which IMFs are present based on structure.
- Practice comparing properties (bp, mp, solubility) based on structure.