

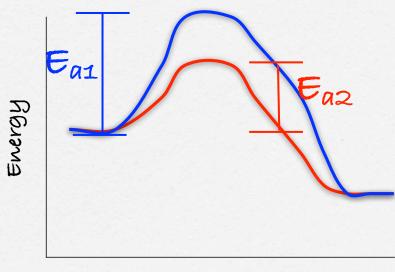
Kinetics & Organic Reactions

UCI Chem 51A Dr. Link

Goals

- ☐ After this lesson you should be able to
 - Determine the general form of the rate law for a reaction based on given information
 - Predict the affect of changing concentration on the rate of reaction
 - O compare relative rates based on activation energies
 - ☐ Identify the rate-determining step in a reaction from a reaction coordinate diagram
 - □ Explain how a catalyst affects the rate of a reaction

- ☐ Molecules must collide in the correct orientation and with the correct energy to react!
- □ Rates depend on:
 - O _____


□ Rates depend on concentration, but of what?

1st Order

2nd Order

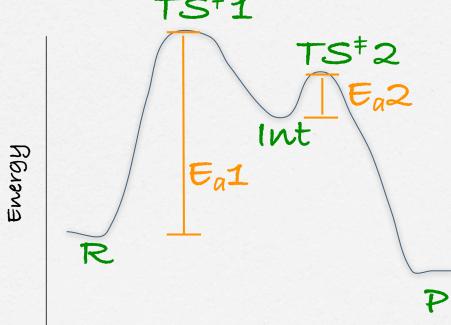
Generally determined experimentally.

Transition States & Activation Energy

Reaction Coordinate

Note: Rates DO NOT depend on ΔG , ΔH , or $K_{eq}!$

Reactions with Multiple Steps

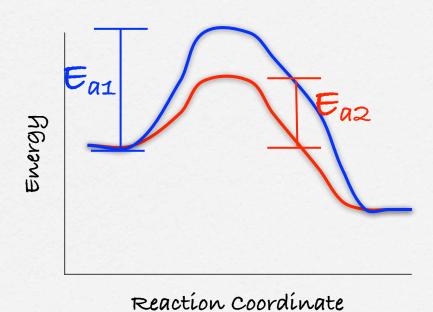

What determines the rate?

TS † 1

TS † 2

Minimum energy needed to

get reaction going depends on highest energy Ts[‡].



Reaction Coordinate

Rate Law & Rate-Determining Steps

☐ What does the rate law tell us about the ratedetermining step?

How Do Catalysts Work?

rate 1 < rate 2

Ts#1 > TS# 2

Rxn 2 catalyzed! Different TS!

Catalysts províde alternative path with lower activation energy!

- Practice predicting the effect of concentration changes on rate of reaction
- Practice determining rate laws from changes in concentrations
- Practice comparing rates of reactions based on reaction coordinate diagrams
- Practice identifying the rate-determining step from a reaction coordinate diagram
- Practice identifying a catalyst or catalyzed reaction