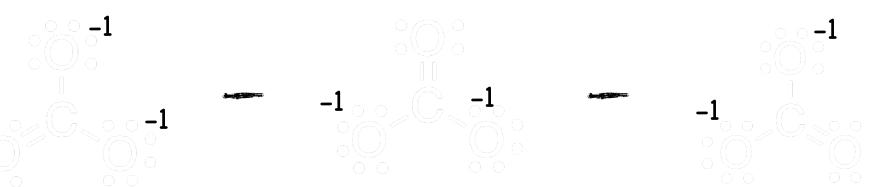
Resonance Structures

UCI Chem 51A Dr. Link

Goals

- 1. Explain the need for resonance theory.
- 2. Explain what is a resonance structure and what is not.
- 3. Draw valid resonance structures.
- 4. Properly use curved arrow notation.
- 5. Identify major and minor resonance contributors.
- 6. Draw the resonance hybrid for a structure.


Resonance Theory

- Resonance structures are NOT REAL.
- Resonance structures are NOT IN EQUILIBRIUM. (Note the arrow type.)
- Resonance structure are NOT ISOMERS.
- So what are they?!

Resonance Hybrids

- Resonance structures we draw are the extremes of a spectrum.
- The "real" structure of the molecule is called a resonance hybrid and is somewhere between the extremes.
- How do we know that? $^{-1}$

Evidence that Lewis Structures Fail

Bond	Length
C-O	143 pm
C=O	122 pm
carbonate	129 pm

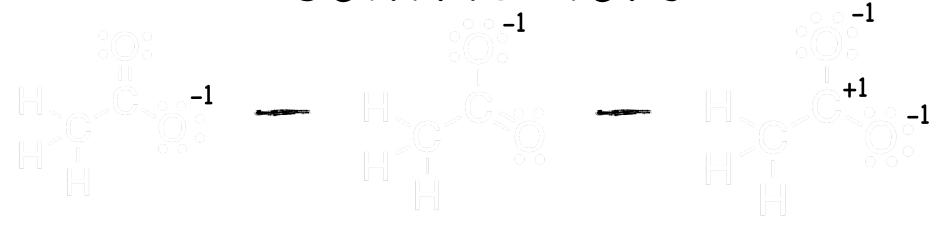
All C-O bonds equal!

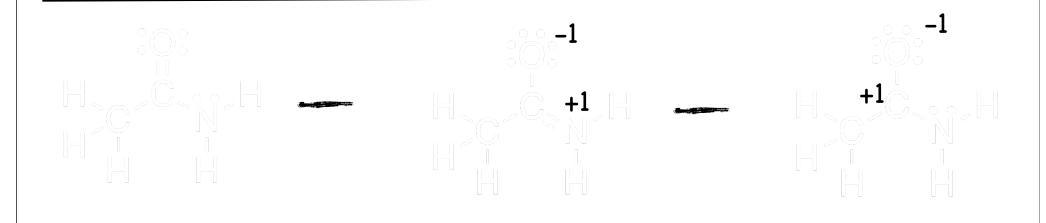
More on Resonance Hybrids

+

=

Fictitious


Fictitious


Real!

Not All Resonance Structures are Created Equally!

- Maximize bonds and octets.
- Minimize formal charge.
- When formal charge is necessary, (-) on more electronegative atoms, (+) on less electronegative atoms.
- Major contributors vs. minor contributors.

Major and Minor Contributors

Wrapping Up

- Practice drawing resonance structures, including formal charge.
- Practice using the curved arrow notation.
- Practice determining whether a resonance structure would be a major or minor contributor to the resonance hybrid.
- Practice drawing the resonance hybrid.