Sn1 Mechanism

UCI Chem 51A Dr. Link

Goals

- * After this lesson you should be able to:
 - * Identify and draw an S_N1 mechanism
 - * Pescribe the experimental evidence that supports the S_N1 mechanism
 - Identify electrophiles that are likely to undergo an S_N1 mechanism
 - * Rank and explain relative stabilities of carbocation intermediates
 - * Explain the importance of the leaving group in S_N1 reactions
 - * Explain the effect of the nucleophile on S_N1 reactions
 - * Explain the effect of the solvent on S_N1 reactions
 - * Predict and explain the stereochemical outcome of an S_N1 reaction at a stereocenter

Nucleophilic Substitution Mechanisms

All at once:

$$-C-X + Nu \longrightarrow -C-Nu + X$$

Break, then form:

$$-C-X \longrightarrow -C^{+} + X^{-} \xrightarrow{Nu} -C-Nu$$

The SN1 Mechanism

$$-C-X \longrightarrow -C^{+} + X^{-} \stackrel{Nu}{\longrightarrow} -C-Nu$$

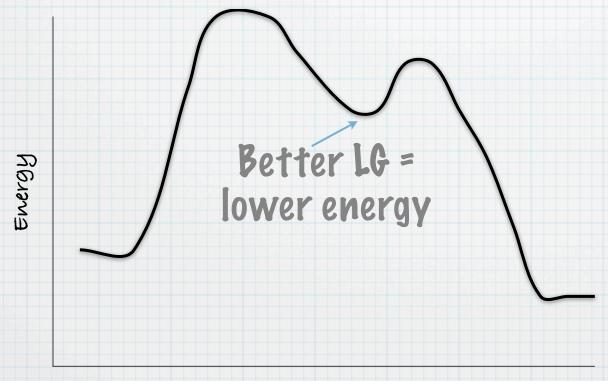
How Po We Know?

Rates rate = k [E]]

Rate law derived experimentally.

Only electrophile both involved in RPS.

Intermediates


Carbocation intermediates identified experimentally.

Stereochemistry

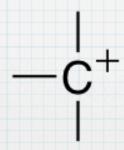
Effects on stereocenters support SN1

The Leaving Group

* All nucleophilic substitution reactions require a good leaving group.

increases amount that intermediate formation favored

Reaction Coordinate

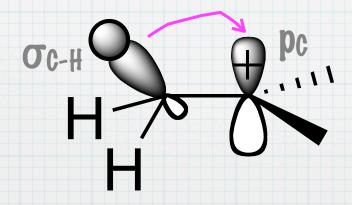

The Electrophilic Carbon

Type of C matters

3° > 2° > 1° > methyl

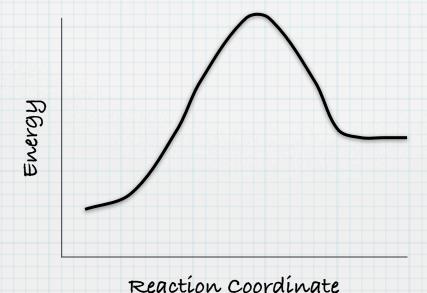
Why? Carbocation stability!

No RXN!



Carbocation Stability

3° > 2° > 1° > methyl


Hyperconjugation

Neighboring σ_{C-H} bonds can donate small amount of e-density More neighboring bonds = more donation = lower energy

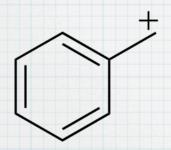
The Hammond Postulate

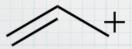
- * TS* resembles structure that is closest to it in energy
- * For an endothermic process, TS[†] is more similar to product than reactant
 - * Anything that lowers energy of product also lowers energy of TS[†]

Applying Hammond Postulate to S_N1 Mechanism

- * Whatever stabilizes carbocation stabilizes TS[†]
- * Stabilizes TS[†] = lower E_a = faster rxn!

Energy


So... 3° > 2° > 1° > methyl


Other ways to stabilize carbocation?

Reaction Coordinate

Benzyland Allyl Carbocations

* Resonance!

Carbocation Summary

- * Stabilized by hyperconjugation
 - * 1° & methyl too high energy to form
- * Stabilized by resonance
- * Can be stabilized by both simultaneously! Even better!

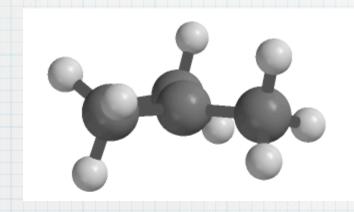
The Nucleophile

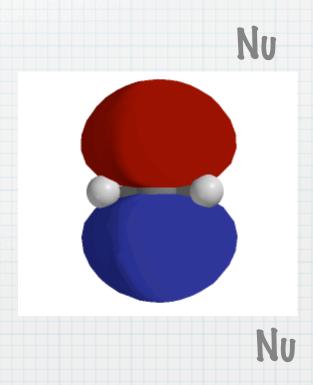
* S_N1 reactions are favored by WEAK nucleophiles

 S_N1 reactions in competition with S_N2 reactions Strong Nu means faster rate for S_N2 No time for $S_N1!$

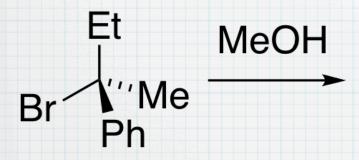
Common S_N1 Nu

The Solvent


* S_N1 reactions are favored by POLAR PROTIC solvents


H₂0 EtOH MeOH

Why?


Stereochemistry and The SNI Mechanism

* Carbocations = trigonal planar

Sn1 at Stereocenter Example

Sn1 Summary

- * Rate = 1st order
- * Mechanism = 2 steps
- * Electrophile: benzyl, ally, 3° > 2°...
 - * no 1°, no methyl
- * LG = good LG required
- * Nu = weak Nu favors S_N1
- * Solvent = polar protic solvent favors S_N1
- * Stereochemistry = racemization of stereocenter

University of Surrey summary video http://www.youtube.com/watch?v=JmcVgE2WKBE

Wrapping Up

- * Practice drawing mechanisms for S_N1 reactions
- * Practice predicting which electrophiles are most likely to undergo S_N1 reactions
- * Practice comparing carbocation stabilities
- * Practice drawing the products for an S_N1 reaction at a stereocenter