Sn2 Mechanism

UCI Chem 51A Dr. Link

Goals

* After this lesson you should be able to:
* Identify and draw an $\mathrm{S}_{\mathrm{N}} 2$ reaction mechanism
* Describe the experimental evidence that supports the $\mathrm{S}_{\mathrm{N}} 2$ mechanism
* Identify electrophiles that are likely to undergo SN2 reactions
* Explain the importance of the leaving group in an SN2 reaction
* Identify nucleophiles that favor SN2 reactions
* Explain the effect of solvent on SN2 reactions
* Describe the consequences of an SN2 reaction occurring at a carbon that is also a stereocenter.

Two Mechanisms for Substitution

All at once:

$$
-{ }_{\mid}^{\mathrm{C}-\mathrm{x}}+\mathrm{Nu}^{-} \longrightarrow-{ }_{\mid}^{\mathrm{C}}-\mathrm{Nu}+\mathrm{X}^{-}
$$

Break, then form:

$$
-\stackrel{\mathrm{C}}{\mathrm{C}-\mathrm{x}} \longrightarrow-{ }_{\mathrm{C}}^{+}+\mathrm{x}^{-} \xrightarrow{\mathrm{Nu}^{-}}-\stackrel{\mathrm{C}}{\mathrm{C}-\mathrm{Nu}}
$$

The Sn2 Mechanism

How Do We Know?

Rates rate $=k[E[][N u]$

Rate law derived experimentally.
Nucleophile \& electrophile both involved in RDS.
Intermediates
No intermediates identified experimentally.
Stereochemistry
Effects on stereocenters support SN2 2

The Leaving Group

* All nucleophilic substitution reactions require a good leaving group.

The Electrophilic Carbon

Type of C matters

Why? Sterics!

$$
\left[\begin{array}{c}
R \\
\delta^{-} N u--\delta^{+} \\
R^{\prime}=--X^{\prime} \\
\delta^{-}
\end{array}\right]^{\ddagger}
$$

The Nucleophile

* SN2 reactions are favored by STRONG nucleophiles

SN2 reactions in competition Strong Nu means faster rate for SN2 More likely to out-compete other rxns

Common $\mathrm{S}_{\mathrm{N}} 2 \mathrm{Nu}$
RO CN^{-}RS X^{-}

The Solvent

* Sn2 reactions are favored by POLAR APROTIC solvents

O

dimethyl sulfoxide tetrahydrofuran (THF) $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ acetonitrile (DMSO)

Stereochemistry and SN2 Mechanism

* Inversion!

Why?

Sn2 Summary

* Rate = 2nd order
* Mechanism = 1 step
* Electrophile: Me> $1^{\circ}>2^{\circ}, n 03^{0}$
* $L G=\operatorname{good} L G$ required
* $\mathrm{Nu}=$ strong Nu favors $\mathrm{S}_{\mathrm{N}} 2$
* Solvent: polar aprotic favors SN2
* Stereochemistry: backside attack, inversion

Nice summary video!
$h t t p: / / w w w . y o u t u b e . c o m / w a t c h ? N R=1 \& f e a t u r e=e n d s c r e e n \& v=h 5 x v a P 6$ bIZI

Wrapping Up

* Practice drawing mechanisms for $S_{N} 2$ reactions
* Practice predicting which electrophiles are most likely to undergo $\mathrm{S}_{\mathrm{N}} 2$ reactions
* Practice identifying electrophiles with good leaving groups
* Practice drawing the products for an $S_{N} 2$ reaction at a stereocenter

