

Goals

- * After this lesson you should be able to:
 - Identify and draw an S_N2 reaction mechanism
 - Pescribe the experimental evidence that supports the S_N2 mechanism
 - Identify electrophiles that are likely to undergo SN2 reactions
 - Explain the importance of the leaving group in an SN2 reaction
 - Identify nucleophiles that favor SN2 reactions
 - Explain the effect of solvent on SN2 reactions
 - Pescribe the consequences of an SN2 reaction occurring at a carbon that is also a stereocenter.

How Do We Know?

Rates rate = k [E] [Nu]

Rate law derived experimentally.

Nucleophile & electrophile both involved in RPS.

Intermediates

No intermediates identified experimentally.

Stereochemistry

Effects on stereocenters support $S_N 2$

The Electrophilic Carbon

Type of C matters

The Nucleophile

 $S_N 2$ reactions in competition

Strong Nu means faster rate for $S_N 2$ More likely to out-compete other rxns

Common S_N2 Nu

RO- CN- RS- X-

Stereochemistry and S_N2 Mechanism

* Inversion!

stereocenter

Why?

S_N2 Summary

* Rate = 2nd order

- Mechanism = 1 step
- * Electrophile: Me>1°>2°, no 3°
- * LG = good LG required
- * Nu = strong Nu favors S_N2
- * Solvent: polar aprotic favors S_N2
- * Stereochemistry: backside attack, inversion

Nice summary video!

http://www.youtube.com/watch?NR=1&feature=endscreen&v=h5xvaP6blZ1

Wrapping Up

- Practice drawing mechanisms for S_N2 reactions
- Practice predicting which electrophiles are most likely to undergo S_N2 reactions
- Practice identifying electrophiles with good leaving groups
- Practice drawing the products for an S_N2 reaction at a stereocenter