

* After this lesson you should be able to:

- Pistinguish between constitutional isomers and stereoisomers
- Identify stereocenters in a molecule
- Petermine whether a molecule is chiral (except multiple stereocenters)
- * Recognize pairs of enantiomers
- * Praw the enantiomer of a chiral molecule

Types of Isomers

 Constitutional Isomers: Molecules with the same molecular formula whose structures vary by arrangement of atoms & bonds (different connections)

* <u>Stereoisomers:</u> Molecules that have the same molecular formula and same connections but vary by spatial arrangement

Types of Stereoisomers

- * Enantiomers: Isomers that are mirror images of each other but are not superimposable on each other
- Piastereomers: Not quite enantiomers, contain multiple stereocenters (we'll get to these in another lesson)
- * <u>Cis/trans isomers:</u> Isomers that are not enantiomers or diastereomers but differ in cis/trans (most common with alkenes)

Enantiomers

 Enantiomers are a pair of isomers that are mirror images of each other and are NOT superimposable on each other.

*

Stereocenters

* Most (but not all) chiral molecules have at least one stereocenter.

How to Tell If It's Chiral or Achiral

* 1. Look for stereocenters.

* If one stereocenter, chiral.

* Multiple stereocenters? Maybe chiral.

* 2. Look for planes of symmetry.

* Plane of symmetry = achiral

Chiral Without A Stereocenter?!

* DNA is chiral!

* Helices have a "handedness"

* Hexaphenylbenzene

* Also a helix

Wrapping Up

- * Practice recognizing types of isomers
- * Practice identifying stereocenters
- * Practice drawing and identifying enantiomers
- Practice looking for planes of symmetry in molecules
- Practice determining whether a molecule is chiral or achiral