# Substitution vs Elimination

UCI Chem 51A Dr. Link

### Goals

- After this lesson you should be able to
   Determine what reaction conditions to choose to favor one mechanism over another
  - Predict the product or products of an alkyl halide reacting under a specific set of conditions

#### Two Types of Reactions...Four Pathways!

All at Once: SN2

$$-\overset{|}{C}-X + Nu^{-} \longrightarrow -\overset{|}{C}-Nu + X^{-}$$

One Step at A Time: SNI

 $-\overset{|}{C} - x \longrightarrow -\overset{|}{C} + x^{-} \xrightarrow{Nu} -\overset{|}{C} - Nu$ 

All at Once: E2

+  $\xrightarrow{B}$   $\rightarrow$   $\rightarrow$  + HB + X<sup>-</sup>

One Step at A Time: E1  $H \dot{X}$  $\downarrow \downarrow \downarrow \rightarrow \downarrow \downarrow \downarrow + X \xrightarrow{B} \downarrow \downarrow + HB$ 

# S<sub>N</sub>2 Refresher

- $\square$  Rate = 2nd order
- Mechanism = 1 steps
- □ LG = good LG required

$$\square R-X = Me > 1^{\circ} > 2^{\circ}$$

0 no 3°

- $\square$  Nu = Strong nucleophile favors  $S_N 2$
- $\Box$  Solvent = polar aprotic solvent favors  $S_N 2$
- Stereochemistry = backside attack, inversion

## **S<sub>N</sub>1 Refresher**

- $\square$  Rate = 1st order
- Mechanism = 2 steps
- □ LG = good LG required
- □ R-X = Benzylic, allyilc, 3°>2°

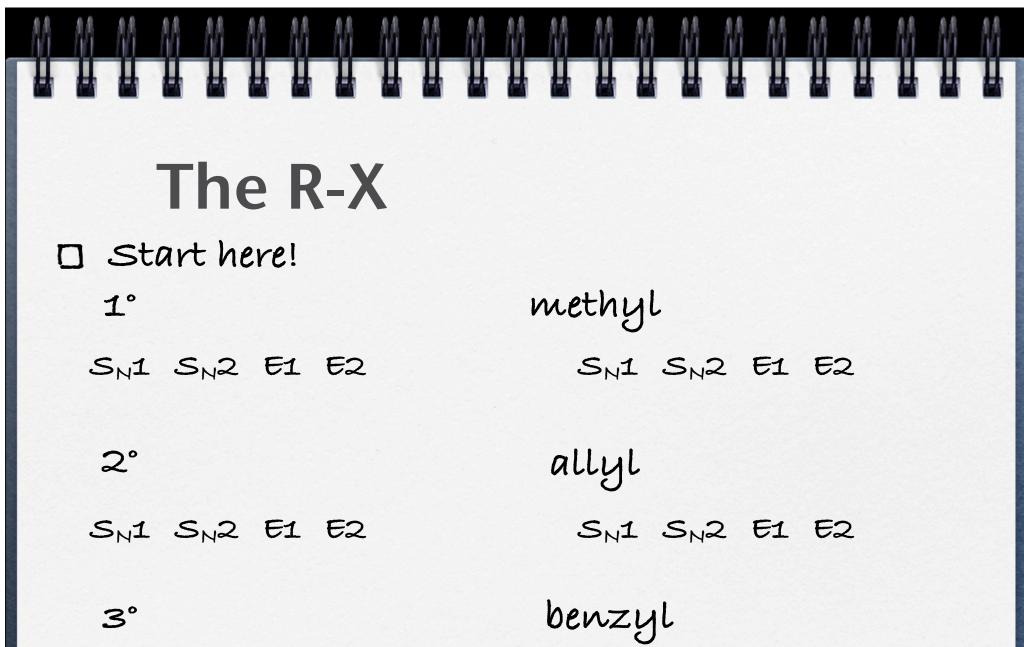
🗆 no 1°, no methyl

- $\square$  Nu = Weak nucleophile favors  $S_N 1$
- □ Solvent = polar protic solvent favors SNI
- □ Stereochemistry = racemization of stereocenter

### **E2 Refresher**

- Rate = 2nd order
- □ Mechanism = 1 step
- □ LG = good LG required
- $\square R-X = \beta-H required, 3°>2°>1°$
- Base = Strong base favors E2
- □ Solvent = polar aprotic solvent favors E2
- Regioselectivity = usually most stable alkene favored\*
- □ Stereochemistry = antiperiplanar TS<sup>‡</sup>
- Can be used to make alkynes

## E1 Refresher


- $\square$  Rate = 1st order
- Mechanism = 2 steps
- □ LG = good LG required
- $\square$  R-X =  $\beta$ -H required. Benzylic, allyilc, 3°>2°

0 no 1°

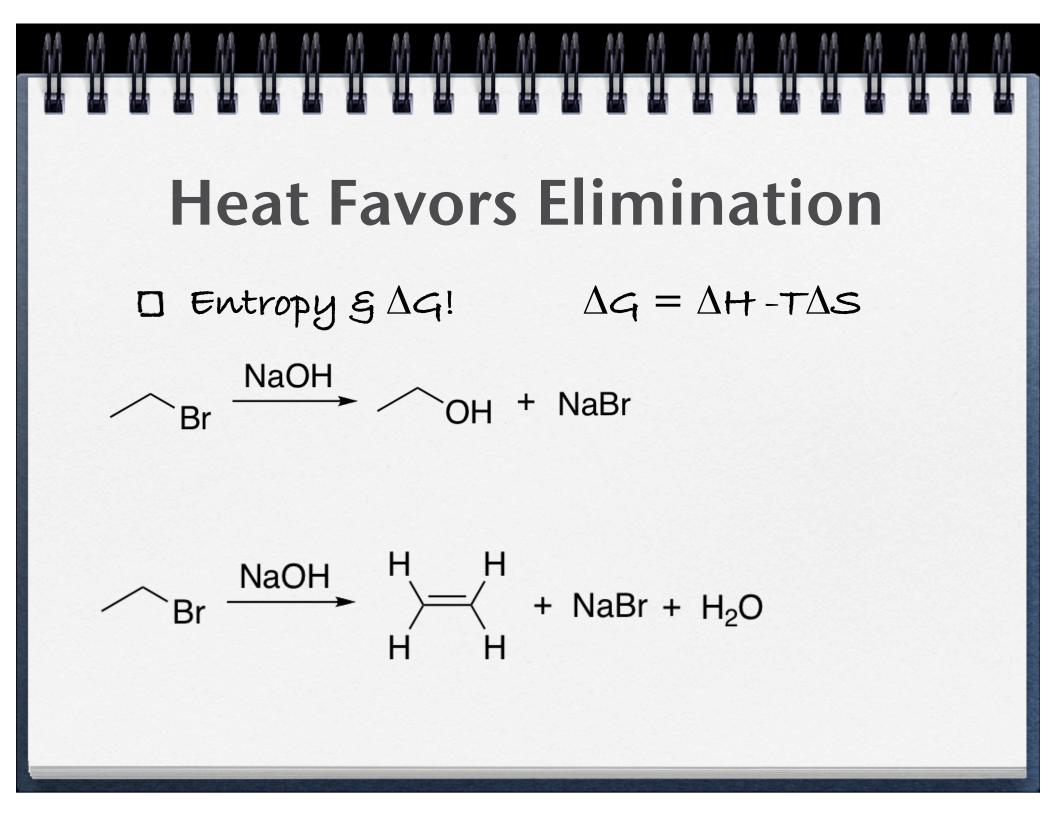
- □ Base = Weak base favors E1
- □ Solvent = polar protic solvent favors E1
- Regioselectivity = most stable alkene favored

#### Which Mechanism Dominates?

Alkyl Halíde
Nucleophíle/Base
Solvent

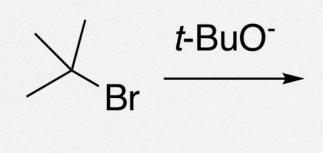


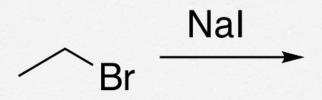
 $S_N 1 S_N 2 E1 E2$ 


 $S_N 1 S_N 2 E1 E2$ 

| The Base/Nucleophile |
|----------------------|
|                      |
|                      |
| 🛛 Weak Base/Nu       |
|                      |
|                      |
|                      |

#### Ways to Avoid Unwanted Reactions


Avoiding Elimination


|   | D                                      |
|---|----------------------------------------|
|   | □                                      |
| ۵ | Avoiding SN2                           |
|   | □                                      |
|   |                                        |
|   | How do we avoid SNI/EI mix?            |
|   | •                                      |
|   | Favoring Elimination over Substitution |
|   | D                                      |





Examples  $H_3C-Br \xrightarrow{OH^-}$ 





# Wrapping Up

- Practice predicting which mechanism or mechanisms will dominate for an alkyl halide under a set of reaction conditions
- Practice choosing mechanisms that will allow one mechanism to be dominant for an alkyl halide where possible