Thermodynamics & Organic Reactions

M

UCI Chem 51A Dr. Link

Goals After this lesson you should be able to Differentiate between enthalpy, entropy, and gibbs free energy Explain the relationship between these three thermodynamic properties Calculate the enthalpy for a reaction Calculate the free energy change for a reaction Identify the sign of entropy change for a reaction Draw and interpret reaction coordinate diagrams.

Thermodynamics Review

- 🗆 In general chemistry:
 - \Box Δ H (enthalpy change)
 - \Box Δ s (entropy change)
 - \Box ΔG (Gibb's free energy change)
 - Reaction coordinate diagrams

Thermodynamics

- Energy comparisons
 - Relative energy of reactants versus products
 - Distribution of reactants and products in equilibrium
 - □ (NOT rates of reaction)

ΔH : Enthalpy

- 0 Enthalpy
 - Heat energy
 - State function (how we get there doesn't matter)
 - Mainly bond enthalpies for us
 - Note: Point of view of system

Bond Dissociation Energies

 Energy required to break a bond (homolytically)

ĤĤ → H• + H•

Where do we find BDEs? *Tables! (don't memoríze!)

Relating ΔG , ΔH , & ΔS

For most organic reactions $\Delta {\bf S}$ is small, so

When does $\Delta {\rm S}$ matter for us? Comparing 2 rxns where $\Delta {\rm H}$ are equal

$\Delta G \& Equilibrium$

How does ΔG relate to equilibrium? $\Delta G = -RT \ln K_{eq} = -2.303 RT \log K_{eq}$

Wrapping Up

- \Box Practice calculating ΔH from BDE values
- \square Practice determining sign of ΔG based on $\Delta H,$ $\Delta S,$ and T
- Practice determining whether a process is endothermic or exothermic
- $\hfill\square$ Practice predicting the sign of ΔS for a process
- Practice drawing and interpreting reaction coordinate diagrams