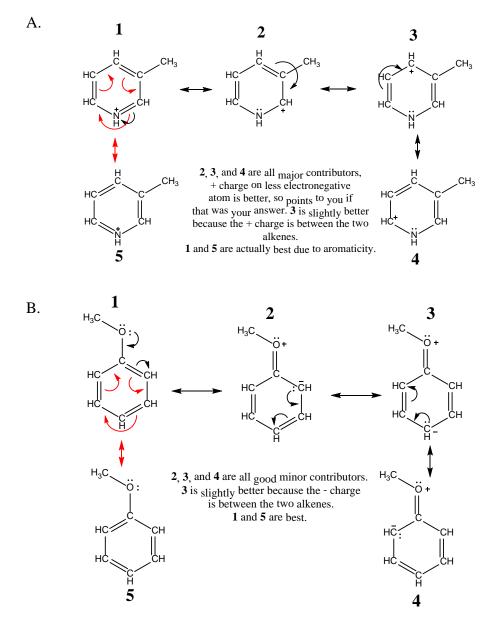
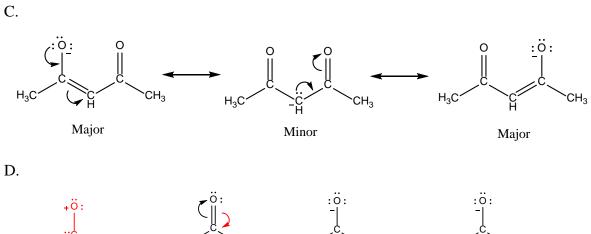
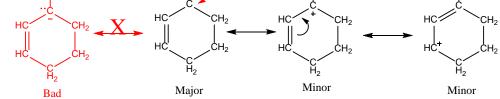
Chem 51A – SSI 2013

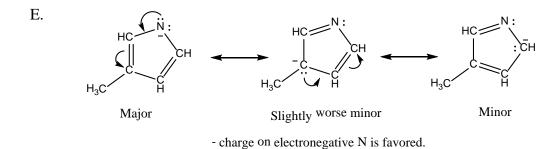
Discussion 2 Worksheet

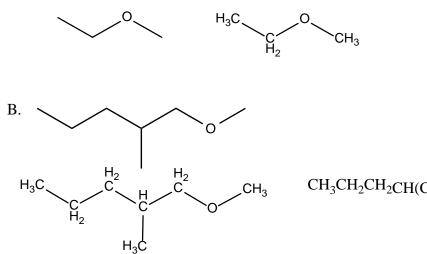

Dr. Renee Link

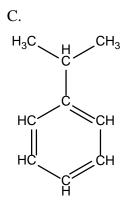

This worksheet will focus on concepts to be discussed or already discussed, for Chapter 1. Those concepts being 1) Resonance Structures 2) Skeletal Structures and 3) Acids/Bases.


On a practical note, we **STRONGLY** recommend you work on these sheets using erasable pencil.

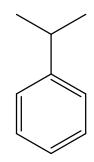
1. Resonance Structures


Draw valid resonance structures for the following molecules and label the structures as major or minor contributors. Use curved arrows to show electron movements and double-headed resonance arrows where needed. (Note: Lone pairs are not shown...draw them in where they are needed.)


You may be tempted to draw the red resonance structure...don't. The + on O and - on C makes this a worse resonance structure.


2. Drawing Organic Structures

For each of the following, the condensed structure, Lewis structure, or skeletal structure is shown. Provide the other two.


A. CH₃CH₂OCH₃

CH₃CH₂CH₂CH₂CH_{(CH₃)CH₂OCH₃}

 $(C_6H_5)CH(CH_3)_2$ There may be other ways to write this one, but this is probably the least ambiguous

3. Acids/Bases

A. What is the Bronsted-Lowry definition of an acid?

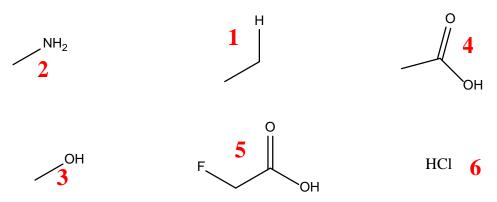
Proton (H⁺) donor, such as HCl or H₂SO₄

B. Of a Bronsted-Lowry base?

Proton (H⁺) acceptor, such as HO⁻ or CH₃O⁻

C. What is the Lewis definition of an acid?

Lone pair acceptor, such as Na⁺ or BCl₃. Note for BCl₃ that B has only 6 electrons, so it wants another 2 electrons.


D. Of a Lewis base?

Lone pair donor, such as (CH₃)₃N or Cl⁻

E. Give an example of each of the above.

See above. Note that all Bronsted-Lowry acids and bases are also Lewis bases/acids.

F. Rank the hydrogens shown below from least acidic (1) to most acidic (6):

