Visit our group website at DeepEMLab.com

Professor Huolin Xin’s research group has published 35 articles in Science and Nature Sister Journals. (Corresponding author on 9) (7 Science, 1 Nature, 7 Nat Materials, 12 in Nat Communications, 3 Nat Nanotechnology, 2 Nature Catalysis, 2 Nature Energy, 1 Nature Chemistry).

(1) co-first authors; * corresponding authors, bold names: group members

2020

  1. A disordered rock salt anode for fast-charging lithium-ion batteries, Haodong Liu, Zhuoying Zhu, Qizhang Yan, Sicen Yu, Xin He, Yan Chen, Rui Zhang, Lu Ma, Tongchao Liu, Matthew Li, Ruoqian Lin, Yiming Chen, Yejing Li, Xing Xing, Yoonjung Choi, Lucy Gao, Helen Sung-yun Cho, Ke An, Jun Feng, Robert Kostecki, Khalil Amine, Tianpin Wu, Jun Lu*, Huolin L. Xin*, Shyue Ping Ong* & Ping Liu*, Nature, https://doi.org/10.1038/s41586-020-2637-6

  2. 0.71-Å resolution electron tomography enabled by deep learning aided information recovery, Chunyang Wang, Guanglei Ding, Yitong Liu, Huolin L Xin, Advanced Intelligent Systems, in press.

  3. Optimizing Electron Density of Nickel Sulfides Electrocatalysts through Sulfur Vacancy Engineering for Alkaline Hydrogen Evolution, Dongbo Jia, Lili Han, Ying Li, Wenjun He, Caichi Liu, Jun Zhang, Cong Chen, Hui Liu, Huolin L Xin, Journal of Materials Chemistry A, doi: 10.1039/d0ta05594h

  4. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis, Wei Liu, Lili Han, Hsiao-Tsu Wang, Xueru Zhao, J Anibal Boscoboinik, Xijun Liu, Chih-Wen Pao, Jiaqiang Sun, Longchao Zhuo, Jun Luo, Junqiang Ren, Way-Faung Pong, Huolin L Xin, Nano Energy, https://doi.org/10.1016/j.nanoen.2020.105078

  5. Composition-Tunable Antiperovskite CuxIn1-xNNi3 as Superior Electrocatalysts for Hydrogen Evolution Reaction, Jiaxi Zhang, Longhai Zhang, Li Du, Huolin L. Xin*, John B. Goodenough, Zhiming Cui*, Angew. Chem., https://doi.org/10.1002/anie.202007883

  6. Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4, L. Han, S. Song, M. Liu, S. Yao, Z. Liang, H. Cheng, Z. Ren, W. Liu, R. Lin, G. Qi, X. Liu, Q. Wu, J. Luo, and H. L. Xin, JACS, 142, 12563–12567 (2020) https://doi.org/10.1021/jacs.9b12111

  7. Nanoscale x-ray and electron tomography, H Yan, PW Voorhees, HL Xin, MRS Bulletin 45, 264-271 (2020) (link)

  8. Elucidating the Limit of Li Insertion into the Spinel Li4Ti5O12, Haodong Liu, Zhuoying Zhu, Jason Huang, Xin He, Yan Chen, Rui Zhang, Ruoqian Lin, Yejing Li, Sicen Yu, Xing Xing, Qizhang Yan, Xiangguo Li, Matthew J. Frost, Ke An, Jun Feng, Robert Kostecki, Huolin Xin*, Shyue Ping Ong*, and Ping Liu*,ACS Materials Lett. 2019, 1, 1, 96–102

  9. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon, Qiaowan Chang, Pu Zhang, Amir Hassan Bagherzadeh Mostaghimi, Xueru Zhao, Steven R Denny, Ji Hoon Lee, Hongpeng Gao, Ying Zhang, Huolin L Xin*, Samira Siahrostami*, Jingguang G Chen*, Zheng Chen*, Nature Communications, 11, 2178 (2020) (link)

  10. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels, Ye Tian, Julien R Lhermitte, Lin Bai, Thi Vo, Huolin L Xin, Huilin Li, Ruipeng Li, Masafumi Fukuto, Kevin G Yager, Jason S Kahn, Yan Xiong, Brian Minevich, Sanat K Kumar, Oleg Gang, Nature Materials (2020) (link)

  11. Fluorine-Anion-Modulated Electron Structure of Nickel Sulfide Nanosheet Arrays for Alkaline Hydrogen Evolution, Wenjun He, Lili Han, Qiuyan Hao, Xuerong Zheng, Ying Li, Jun Zhang, Caichi Liu, Hui Liu, Huolin L Xin*, ACS Energy Letters, 4, 2905-2912 (2020) (link)

2019

  1. A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond, Guanglei Ding, Yitong Liu, Rui Zhang, Huolin L. Xin*, Scientific Reports, 9, 12803 (2019) (link)

  2. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension, Shuang Pi, Can Li, Hao Jiang, Weiwei Xia, Huolin Xin, J Joshua Yang, Qiangfei Xia, Nature Nanotechnology, 14, 35–39 (2019)a

  3. Amorphization activated ruthenium-tellurium nanorods for efficient water splitting, Juan Wang, Lili Han, Bolong Huang, Qi Shao, Huolin L. Xin, Xiaoqing Huang, Nature Communications 10, 1-11 (2019)

  4. Elucidating the Limit of Li Insertion into the Spinel Li4Ti5O12, Haodong Liu, Zhuoying Zhu, Jason Huang, Xin He, Yan Chen, Rui Zhang, Ruoqian Lin, Yejing Li, Sicen Yu, Xing Xing, Qizhang Yan, Xiangguo Li, Matthew J Frost, Ke An, Jun Feng, Robert Kostecki, Huolin Xin*, Shyue Ping Ong*, Ping Liu*, ACS Materials Lett., 1, 96-102, (2019)

  5. Dopant Distribution in Co-Free High-Energy Layered Cathode Materials, Linqin Mu, Rui Zhang, Wang Hay Kan, Yan Zhang, Luxi Li, Chunguang Kuai, Benjamin Zydlewski, Muhammad Mominur Rahman, Cheng-Jun Sun, Sami Sainio, Maxim Avdeev, Dennis Nordlund, Huolin L Xin, Feng Lin, Chemistry of Materials, 31, 9769-9776 (2019)

  6. Direct high-resolution mapping of electrocatalytic activity of semi-two-dimensional catalysts with single-edge sensitivity, Tong Sun, Dengchao Wang, Michael V. Mirkin, Hao Cheng, Jin-Cheng Zheng, Ryan M. Richards, Feng Lin, and Huolin L. Xin*, PNAS, 116, 11618-11623 (2019) (link)

  7. Anomalous metal segregation in lithium-rich material provides design rule for stable cathode in lithium-ion battery, Ruoqian Lin, Enyuan Hu, Mingjie Liu, Yi Wang, Hao Cheng, Jinpeng Wu, Jin-Cheng Zheng, Qin Wu, Seongmin Bak, Xiao Tong, Rui Zhang, Wanli Yang, Kristin A. Persson, Xiqian Yu, Xiao-Qing Yang, Huolin L. Xin*, Nature Communications, 10, 1650 (2019) (link)

  8. Atomistic Defect Makes a Phase Plate for the Generation and High-Angular Splitting of Electron Vortex Beams, Xiaoyan Zhong, Jie Lin, ShowShiuan Kao, Zhenyu Liao, Jing Zhu, Xiaojing Huang, Rui Zhang, Huolin L. Xin*, ACS Nano, 13, 3964-3970 (2019) (link)

  9. Unusual strain effect of a Pt-based L10 face-centered tetragonal core in core/shell nanoparticles for the oxygen reduction reaction, Mingjie Liu, Huolin Xin and Qin Wu, Phys. Chem. Chem. Phys., 21, 6477-6484 (2019)

  10. Regioselective surface encoding of nanoparticles for programmable self-assembly, Gang Chen, Kyle J.Gibson, Di Liu, Huw C. Rees, Jung-Hoon Lee, Weiwei Xia, Ruoqian Lin, Huolin L.Xin, Oleg. Gang , Yossi Weizmann, Nature Materials 18, 169-174 (2019). (link)

  11. Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation, Cheng Hao Wu, et al, Nature Catalysis, 2019, 2(1): 78. (link)

  12. Atomically dispersed Mo catalysts for high‐efficiency ambient N2 fixation, Lili Han, Xijun Liu, Jinping Chen, Ruoqian Lin, Haoxuan Liu, Fang Lu, Seongmin Bak, Zhixiu Liang, Shunzheng Zhao, Eli Stavitski, Jun Luo, Radoslav R. Adzic and Huolin Xin*, Angew. Chem., 58, 2321-2325 (2019) (link)

2018

  1. Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and in Situ Transmission Electron Microscopy, Weiwei Xia, Yang Yang, Qingping Meng, Zhiping Deng, Mingxing Gong, Jie Wang, Deli Wang, Yimei Zhu, Litao Sun, Feng Xu, Ju Li, and Huolin L. Xin*, ACS Nano, 2018, 12 (8), pp 7866–7874

  2. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release, Enyuan Hu, Xiqian Yu*, Ruoqian Lin, Xuanxuan Bi, Jun Lu*, Seongmin Bak, KyungWan Nam, Huolin L. Xin*, Cherno Jaye, Daniel A. Fischer, Kahlil Amine, Xiao-Qing Yang, Nature Energy, 3, 690–698 (2018)

  3. Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials, Linqin Mu, Ruoqian Lin, Rong Xu, Lili Han, Sihao Xia, Dimosthenis Sokaras, James D. Steiner, Tsu-Chien Weng, Dennis Nordlund, Marca M. Doeff, Yijin Liu, Kejie Zhao, Huolin L. Xin*, and Feng Lin*, Nano Letters, 2018, 18 (5), pp 3241–3249

  4. Liquid-like, self-healing aluminum oxide during deformation at room temperature, Yang, Yang, Akihiro Kushima, Weizhong Han, Huolin Xin*, and Ju Li*, Nano Letters, 18, 2492 (2018)

  5. Deciphering the Cathode–Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials, Linqin Mu, Xu Feng, Ronghui Kou, Yan Zhang, Hao Guo, Chixia Tian, Cheng-Jun Sun, Xi-Wen Du, Dennis Nordlund, Huolin L.Xin, Feng Lin. Advanced Energy Materials, 2018, 8(34): 1801975.

  6. Garnet Electrolyte Surface Degradation and Recovery, Lei Cheng, Miao Liu, Apurva Mehta, Huolin Xin , Feng Lin , Kristin Persson, Guoying Chen, Ethan J. Crumlin, and Marca Doeff, ACS Applied Energy Materials, 2018, 1(12): 7244-7252.

  7. Achieving High Cycling Rates via In Situ Generation of Active Nanocomposite Metal Anodes, Nikhilendra Singh, Timothy S. Arthur, Oscar Tutusaus, Jing Li, Kim Kisslinger, Huolin L. Xin, Eric A. Stach, Xudong Fan, and Rana Mohtadi, ACS Applied Energy Materials, 2018, 1(9): 4651-4661.

2017

  1. Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM, Mingyuan Ge, Ming Lu, Yong Chu, and Huolin Xin*, Scientific Reports 7, 16420, (2017)

  2. Spinel Ferrite Core–Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces, Sanna Angotzi, Marco, Anna Musinu, Valentina Mameli, Andrea Ardu, Claudio Cara, Daniel Niznansky, Huolin L. Xin*, and Carla Cannas*, ACS Nano, 11, 7889 (2017)

  3. Collisions of Ir oxide nanoparticles with carbon nanopipettes: experiments with one nanoparticle. Zhou, Min, Yun Yu, Keke Hu, Huolin L. Xin*, and Michael V. Mirkin*, Analytical Chemistry, 89, 2880-2885 (2017)

2016 (1 Science, 1 Nature, 1 Nat Energy, 2 Nat Mats, 2 Nat Commun to date in 2016; Corresponding author on 3)

27. Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3, Jing Tao et al, Scientific Reports, in press

26. Interrogation Of Bimetallic Particle Oxidation In Three Dimensions At The Nanoscale, Lili Han, et al, Huolin L. Xin*, Nature Communications,7, 13335 (2016) doi: 10.1038/ncomms13335

“Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale Understanding bimetallic alloy oxidation is key to design of hollow-structured binary oxides and their optimization for applications, e.g., as catalysts. Here the authors combine real-time imaging and chemically-sensitive electron tomography to uncover unexpected complexity in possible morphological outcomes of bimetallic oxidation.”

25. Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes, Enyuan Hu, Yingchun Lyu, Huolin L. Xin, Jue Liu, Lili Han, Seong-Min Bak, Jianming Bai, Xiqian Yu, Hong Li, and Xiao-Qing Yang, Nano Lett., 2016, 16 (10), pp 5999–6007

24. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Z Wang, S Joshi, SE Savel’ev, H Jiang, R Midya, P Lin, M Hu, N Ge, John Paul Strachan, Zhiyong Li, Qing Wu, Mark Barnell, Geng-Lin Li, Huolin L. Xin, R. Stanley Williams, Qiangfei Xia & J. Joshua Yang, Nature Materials (2016) doi:10.1038/nmat4756

23. Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties,Yujing Liu, Huidong Zang, Ling Wang, Weifei Fu, Wentao Yuan, Jiake Wu, Xinyi Jin, Jishu Han, Changfeng Wu, Yong Wang, Huolin L. Xin, Hongzheng Chen, and Hanying Li, Chemistry of Materials, DOI: 10.1021/acs.chemmater.6b03589

22. Towards a portable open-source tomography toolbox: Containerizing tomography software with docker M Lin, H Xin, Y Chu, H Yan, R Tappero, J Thieme, WK Lee, D Biersach, … ICXOM23: International Conference on X-ray Optics and Microanalysis, AIP Conf. Proc. 1764, 030008 (2016); http://dx.doi.org/10.1063/1.4961142

21. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries, Ziying Wang, Jungwoo Z. Lee, Huolin L. Xin, Lili Han, Nathanael Grillon, Delphine Guy-Bouyssou, Emilien Bouyssou, Marina Proust, Ying Shirley Meng, Journal of Power Sources 324, 342-348. http://dx.doi.org/10.1016/j.jpowsour.2016.05.098

20. Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR, W Xiao et al, Nanoscale, 2016,8, 14793-14802, doi: 10.1039/C6NR03944H

19. Ultralow content of Pt on Pd–Co–Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction, S Liu et al, Nano Energy, doi: 10.1016/j.nanoen.2016.07.038

18. Surface patterning of nanoparticles with polymer patches, RM Choueiri et al, Nature, doi:10.1038/nature19089

17. Probing Microstructure and Phase Evolution of α-MoO3 Nanobelts for Sodium-Ion Batteries by In Situ Transmission Electron Microscopy, W. Xia, F. Xu*, C. Zhu, H. L. Xin*, Q. Xu, P. Sun, L. Sun*, Nano Energy, doi:10.1016/j.nanoen.2016.07.017

16. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries, W Lei, LL Han, C Xuan, R Lin, H Liu, HL Xin, D Wang, Electrochimica Acta, 210, 130-137 (2016) doi:10.1016/j.electacta.2016.05.158

15. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction, D. Wang, et al, H. L. Xin*, and H. D. Abruna, Nature Communications, 7, 11941 (2016) doi:10.1038/ncomms11941

Replacement of platinum is important for lowering the cost of fuel cell electrocatalysts, but less precious alternatives such as palladium are hindered by lower durability. Here, the authors show that incorporation of trace amounts of gold improves the durability of palladium based oxygen reduction catalysts.

14. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries, Feng Lin, Dennis Nordlund, Yuyi Li, Matthew K. Quan, Lei Cheng, Tsu-Chien Weng, Yijin Liu*, Huolin L. Xin* & Marca M. Doeff*, Nature Energy, 1, 15004 (2016) doi:10.1038/nenergy.2015.4

Advanced batteries require careful control over the interfacial properties of their constituent materials. This study designs hierarchically structured cathode materials that are resistant to surface reconstruction, leading to improved cycling performance.

(Also see accompanying press release)

13. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries, Deli Wang, Huan He, Lili Han, Ruoqian Lin, et al, Huolin L Xin*, Nano Energy, (2016) doi:10.1016/j.nanoen.2015.12.019

12. Facet Control of Gold Nanorods, Q Zhang, Lili Han, H Jing, DA Blom, Y Lin, HL Xin, H Wang, ACS nano, 10, 2960, (2016) doi: 10.1021/acsnano.6b00258

11. Homogeneously dispersed, multimetal oxygen-evolving catalysts, Zhang, Lili Han, et al, HL Xin, E. Sargent, Science, doi: 10.1126/science.aaf1525

10. Rational design of three-dimensional nitrogen and phosphorus Co-doped graphene nanoribbons/CNTs composite for the oxygen reduction, Jie Wang, Ze-Xing Wu, Li-Li Han, Yuan-Yang Liu, Jun-Po Guo, Huolin L Xin, De-Li Wang, Chinese Chemical Letters, doi:10.1016/j.cclet.2016.03.011 (2016)

9. Diamond family of nanoparticle superlattices, W. Liu, M. Tagawa, H. L. Xin, et al, Science, 351, 582 (2016) doi: 10.1126/science.aad2080

“Colloidal particles can act as analogs of atoms for studying crystallization and packing behavior, but they don’t naturally bond together the way atoms do. Short strands of DNA are one versatile way to link together colloidal particles…. [This work] devised a set of DNA strands that pack into origami structures. Inside each structure were strands that cage a gold nanoparticle. These were further linked to other uncaged nanoparticles to assemble a diamond-like structure. Changing the strand design yielded a wide range of sparsely packed colloidal crystals.”

(Also see accompanying press release)

8. Lattice engineering through nanoparticle-DNA frameworks, Y. Tian et al, Nature Materials, (2016) doi:10.1038/nmat4571

7. Nitrogen and sulfur co-doping of partially exfoliated MWCNTs as 3-D structured electrocatalysts for the oxygen reduction reaction, J Wang et al, Journal of Materials Chemistry A, 4, 5678 (2016) doi:10.1039/C6TA00490C

6. Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO2 Memristor, H Jiang, L. L. Han, et al, Scientific Reports 6, 28525 (2016) doi:10.1038/srep28525

5. In situ STEM/EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries, Z Wang et al, Nano Lett., 2016, 16 (6), pp 3760–3767. doi: 10.1021/acs.nanolett.6b01119

4. Supramolecular Gel-Assisted Synthesis of Double Shelled Co@ CoO@ NC/C Nanoparticles with Synergistic Electrocatalytic Activity for the Oxygen Reduction Reaction, Z Wu, J Wang, L Han, R Lin, HL Xin, H Liu, D Wang, Nanoscale, 2016, 8, 4681-4687. doi: 10.1039/C5NR07929B

3. Hollow-Structured Carbon-Supported Nickel Cobaltite Nanoparticles as an Efficient Bifunctional Electrocatalyst for the Oxygen Reduction and Evolution Reactions, Jie Wang, Zexing Wu, Lili Han, Ruoqian Lin, Huolin L. Xin, Deli Wang, ChemCatChem, doi: 10.1002/cctc.201501058 (2016)

2. Solution‐Processable Glass LiI‐Li4SnS4 Superionic Conductors for All‐Solid‐State Li‐Ion Batteries, Kern Ho Park, Dae Yang Oh, Young Eun Choi, Young Jin Nam, Lili Han, Ju‐Young Kim, Huolin Xin, Feng Lin, Seung M Oh, Yoon Seok Jung, Advanced Materials, DOI: 10.1002/adma.201505008 (2016)

1. Boost up electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues, G Xue, J Wu, C Fan, S Liu, Z Huang, Y Liu, B Shan, HL Xin, Q Miao, H Chen, H Li, Materials Horizons, DOI: 10.1039/C5MH00190K (2016)

2015

20. Interfacial dislocations in (111) oriented (Ba0. 7Sr0. 3) TiO3 films on SrTiO3 single crystal, Xuan Shen, Tomoaki Yamada, Ruoqian Lin, Takafumi Kamo, Hiroshi Funakubo, Di Wu, Huolin L Xin, Dong Su, Applied Physics Letters, 107, 141605 (2015) http://dx.doi.org/10.1063/1.4932953

19. Bubble nucleation and migration in a lead–iron hydr (oxide) core–shell nanoparticle, K Niu, T Frolov, HL Xin, J Wang, M Asta, H Zheng, PNAS 112 (42), 12928-12932

18. Enhanced Electrocatalytic Activity and Stability of Pd3V/C Nanoparticles by a Trace Amount of Pt Decoration for the Oxygen Reduction Reaction, S Liu et al, Journal of Materials Chemistry A, DOI: 10.1039/C5TA05202E

17. Structurally Ordered Pt-Zn/C Series Nanoparticles as Efficient Anode Catalysts for Formic Acid Electrooxidation, J Zhu et al, Journal of Materials Chemistry A, DOI: 10.1039/C5TA05699C

16. Hierarchical, Ultrathin Single-Crystal Nanowires of CdS Conveniently Produced in Laser-Induced Thermal Field, Li-Li Han et al, Langmuir 31, 8162 (2015) DOI: 10.1021/acs.langmuir.5b01923

15. Synergistic synthesis of quasi-monocrystal CdS nanoboxes with high-energy facets, Li-Li Han et al, Journal of Materials Chemistry A, 2015, DOI: 10.1039/C5TA05202E

14. Tailoring the surface properties of LiNi 0.4 Mn 0.4 Co 0.2 O 2 by titanium substitution for improved high voltage cycling performance, Physical Chemistry Chemical Physics, 17, 21778 (2015) DOI: 10.1039/C5CP03228H

13. Large-scale fabrication of field-effect transistors based on solution-grown organic single crystals, S. Liu et al, Science Bulletin 60 (12), 1122-1127 DOI: 10.1007/s11434-015-0817-9

12. Sodiation Kinetics of Metal Oxide Conversion Electrodes: a Comparative Study with Lithiation, Kai He, et al, Huolin Xin*, Dong Su*, Nano Letters, Just Accepted Manuscript, DOI: 10.1021/acs.nanolett.5b01709

11. Interfacing Solution-Grown C60 and (3-pyrrolinium)(CdCl3) Single-Crystals for High-Mobility Transistor-Based Memory Devices, Advanced Materials, 27, 4476–4480 (2015) DOI: 10.1002/adma.201501577

10. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames, Nature Nanotechnology, (2015) doi:10.1038/nnano.2015.105

9. Superlattices assembled through shape-induced directional binding, Nature Communications, 6, 6912 (2015) DOI: http://dx.doi.org/10.1038/ncomms7912

8. Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials, K He et al, Nano Letters, 15, 1437 (2015) DOI: 10.1021/nl5049884

7. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells, Nature Communications, 6, 5963 (2015) DOI: http://dx.doi.org/10.1038/ncomms6963

6. Periodic Artifact Reduction in Fourier Transforms of Full Field Atomic Resolution Images, R. Hovden, et al, Microscopy and Microanalysis, DOI: http://dx.doi.org/10.1017/S1431927614014639

5. Solution‐Grown Organic Single‐Crystalline Donor–Acceptor Heterojunctions for Photovoltaics, H Li, C Fan, W Fu, HL Xin, H Chen, Angewandte Chemie, DOI: http://dx.doi.org/10.1002/ange.201408882

4. 3D hollow structured Co2FeO4/MWCNT as an efficient non-precious metal electrocatalyst for oxygen reduction reaction, J Wang, HL Xin, J Zhu, S Liu, Z Wu, D Wang, Journal of Materials Chemistry A, DOI: http://dx.doi.org/10.1039/C4TA06265E

3. Understanding growth mechanisms of epitaxial manganese oxide (Mn 3 O 4) nanostructures on strontium titanate (STO) oxide substrates, JY Liu, X Cheng, V Nagarajan, HL Xin, MRS Communications06/2015; 5(02):1-8. DOI:10.1557/mrc.2015.12

2. Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction, M Wu et al, Journal of Materials Chemistry A 3, 7727-7731 (2015). DOI: 10.1039/C4TA06323F

1. Ambipolar Charge Transport of TIPS-Pentacene Single-Crystals Grown from Non-Polar Solvents, G Xue et al, Materials Horizon, (2015) DOI: http://dx.doi.org/10.1039/C4MH00211C

2014

16. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy, Haiyan Tan, Ye Zhu, Christian Dwyer, and Huolin L. Xin*, Phys. Rev. B., 90, 214305 (2014). DOI: http://dx.doi.org/10.1103/PhysRevB.90.214305 (link)

15. A Model Based Method for Tomographic Reconstructions of Nanoparticle Assemblies, J Charlotte Li, D Su, HL Xin*, Microscopy and Microanalysis 20 (S3), 808-809. DOI: http://dx.doi.org/10.1017/S1431927614005765

14. Influence of Synthesis Conditions on the Surface Passivation and Electrochemical Behavior of Layered Cathode Materials, Journal of Materials Chemistry A, 2, 19833-19840 (2014) doi: http://dx.doi.org/10.1039/C4TA04497E (link)

13. Deterministic arbitrary switching of polarization in a ferroelectric thin film, R. K. Vasudevan, H. L. Xin, et al, Nature Communications 5, 4971 (2014) DOI: http://dx.doi.org/10.1038/ncomms5971

12. Facet development during platinum nanocube growth, H. G. Liao, D. Zherebetskyy, H. L. Xin, C. Czarnik, P. Ercius, H. Elmlund, M. Pan, L.-W. Wang, and H. Zheng, Science, 22, 916 (2014) doi:10.1126/science.1253149 (link, SI)

11. Profiling the Nanoscale Gradient in Stoichiometric Layered Cathode Particles for Lithium-ion Batteries, Feng Lin, Dennis Nordlund, Isaac M. Markus, Tsu-Chien Weng, H. L. Xin*, Marca M. Doeff, Energy & Environmental Science, 7, 3077 (2014), DOI: 10.1039/c4ee01400f (link, SI)

10. Chemical and Structural Stability of Lihtium-Ion Battery Electrode Materials under Electron Beam, Feng Lin, Isaac M. Markus, Marca M. Doeff, and H. L. Xin*, Nature Scientific Reports, 4, 5694, doi:10.1038/srep05694 (2014) (link)

9. Nanostructured flexible Mg-modified LiMnPO4 matrix as high-rate cathode materials for Li-ion batteries, Q Lu, GS Hutchings, Y Zhou, H. L. Xin, H Zheng, F Jiao, Journal of Materials Chemistry A 2 (18), 6368-6373 (2014) DOI: http://dx.doi.org/10.1039/C4TA00654B (link)

8. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging, Siyuan Dong et al, Optics Express, 22, 13586 (2014) DOI: 10.1364/OE.22.013586 (link)

7. Revealing the Atomic Restructuring of Pt-Co Nanoparticles, H. L. Xin et al, Nano Letters, 14, 3203 (2014) DOI: 10.1021/nl500553a (link, SI)

(Also see coverage by Sciencedaily, R&D Mag, and LBL news)

6. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries, Feng Lin, Isaac Markus, Dennis Nordlund, Tsu-Chien Weng, Mark Asta, H. L. Xin*, M. M. Doeff, Nature Communications, DOI: 10.1038/ncomms4529 (link, SI)

“Surfaces of electrodes evolve with charging and discharging cycles, leading to deterioration of battery performance. This paper reports structural reconstruction and chemical evolution at the surface of a stoichiometric layered cathode material with spectroscopy and microscopy techniques.”

(Also see coverage by R&D Mag, Gizmodo, Phys.org, and BNL news)

5. Phase Evolution for Conversion Reaction Electrodes in Lithium-ion Batteries, Feng Lin, Dennis Nordlund, Tsu-Chien Weng, Ye Zhu, Chunmei Ban, Ryan Richards, and H L Xin*, Nature Communications, 5, 3356. doi:10.1038/ncomms4358 (link, SI)

“It is a challenge to visualize phase conversion in batteries. This paper reports a grid-in-a-coin cell approach to directly probe three-dimensional morphology and charge state distribution of electrode materials, and reveal the dominance of a heterogeneous phase conversion mechanism.”

(Also see coverage by R&D Mag, Gizmodo, Phys.org, and BNL news. Selected among the 2014’s top 10 scientific achievements at Brookhaven Lab)

4. Is There a Stobbs Factor in Atomic-Resolution STEM-EELS Mapping?, H L Xin*, C Dwyer, DA Muller, Utramicroscopy, 19, 38 (2014) DOI: 10.1016/j.ultramic.2014.01.006 (link)

3. Visualization of Electrode-Electrolyte Interfaces in LiPF6/EC/DEC Electrolyte for Lithium Ion Batteries via In-Situ TEM, Z Zeng et al, Nano Letters, DOI:10.1021/nl403922u (link)

2. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces, C. Chen, et al, Science, 343, 1339 (2014) (link, SI)

1. Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage, Jie Wang, H. L. Xin, D. L. Wang, Part. Part. Syst. Charact., DOI: 10.1002/ppsc.201300315 (link)

Above are published after becoming a PI

Below are published prior to working independently

2013

1. Mesoporous CNT@TiO2-C Nanocable with Extremely Durable High Rate Capability for Lithium-Ion Battery Anodes, B Wang, H L Xin et al, Scientific Reports, DOI: 10.1038/srep03729 (link)

2. Epitaxial Bi5Ti3FeO15-CoFe2O4 Pillar-Matrix Multiferroic Nanostructures, A Imai(1), X Cheng(1), H L Xin et al, ACS Nano, 7, 11079 (2013) DOI: 10.1021/nn404779x (link)

3. In Situ TEM Study of Catalytic Nanoparticle Reactions in Atmospheric Pressure Gas Environment, H. L. Xin et al, Microscopy and Microanalysis, FirstView, doi: http://dx.doi.org/10.1017/S1431927613013433 (link)

4. Scanning Confocal Electron Energy-Loss Microscopy Using Valence-Loss Signals, H. L. Xin* et al, Microscopy and Microanalysis, FirstView, doi: http://dx.doi.org/10.1017/S1431927613001438 (link)

5. One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability, J. Cheng, H. L. Xin, H. Zheng, B. Wang, Journal of Power Sources, doi:10.1016/j.jpowsour.2013.01.025 (link)

6. Coalescence in the thermal annealing of nanoparticles an in-situ STEM study of the growth mechanisms of ordered Pt-Fe nanoparticles in a KCl matrix, H. Chen , Y. Yu , H. L. Xin et al, Chemistry of Materials, DOI: 10.1021/cm303489z (link)

2012

1. Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts, D. Wang (1), H. L. Xin (1) et al, Nat. Mater., 12, 81–87 (2012) (link)

2. Channeling of a subangstrom electron beam in a crystal mapped to two-dimensional molecular orbitals, Robert Hovden, H. L. Xin, D. A. Muller, Physical Review B, 86 (19), 195415 (2012) (link)

3. Fano resonance in atomic-resolution spectroscopic imaging of solids, C. Dwyer, H. L. Xin, D. A. Muller, Physical Review B 86 (9), 094119 (2012) (link)

4. Tuning ORR Activity via Controllable Dealloying: A Model Study of Ordered Cu3Pt/C Intermetallic Nanocatalysts, D. Wang, Y. Yu, H. L. Xin et al, Nano Lett., Just Accepted Manuscript, DOI: 10.1021/nl302404g (2012) (link)

5. On-column 2p bound state with topological charge ±1 excited by an atomic-size vortex beam in an aberration-corrected scanning transmission electron microscope, H. L. Xin*, and Haimei Zheng, Microsc. and Microanal., 18, 711 (2012) (link)

6. Revealing Correlation of Valence State with Nanoporous Structure in Cobalt Catalyst Nanoparticles by in situ Environmental TEM, H. L. Xin et al, ACS Nano, 6, 4241 (2012) (link)

7. Atomic-Scale Compositional Mapping and 3-Dimensional Electron Microscopy of Dealloyed PtCo3 Catalyst Nanoparticles with Spongy Multi-Core/Shell Structures, Z. Liu and H. L. Xin et al, J. Electrochem. Soc., 159, F554 (2012) (link)

8. Comparison between Dealloyed PtCo3 and PtCu3 Cathode Catalysts for PEMFCs, Zhiqiang Yu et al, J. of Phys. Chem. C, in press (2012) (link)

9. Determining On-Axis Crystal Thickness with Quantitative Position-Averaged Incoherent Bright-Field Signal in an Aberration-corrected STEM, H. L. Xin* et al, Microsc. and Microanal., 18, 720 (2012) (link)

10. Data Processing For Atomic Resolution EELS, Paul Cueva et al, Microsc. and Microanal., 18, 667 (2012) (link)

11. In situ Observation of Oscillatory Growth of Bismuth Nanoparticles, H. L. Xin and Haimei Zheng,Nano Lett.,12, 1470 (2012) (link)

12. Facile Synthesis of Carbon-Supported Pd-Co Core-Shell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration, D.L. Wang,H. L. Xin et al, Chemistry of Materials, 24, 2274 (2012) (link)

13. SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage, H. Li (1), H. L. Xin (1) et al, Phys. Chem. Chem. Phys., 14, 6981 (2012) (link)

14. 3-D Tracking and Visualization of Hundreds of Pt-Co Fuel Cell Nanocatalysts During Electrochemical Aging, Y. Yu (1), H. L. Xin (1), Nano Lett., Article ASAP,10.1021/nl203920s (2012) (link)

2011

1. Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell, H. L. Xin et al, Nano Lett., 12, 490 (2011) (link)

2. Calcite prisms from mollusk shells (Atrina rigida): swiss-cheese-like organic-inorganic single-crystal composites, H. Li (1), H. L. Xin (1) et al, Advanced Functional Materials 21, 2028 (2011) (link)

3. Extended depth of field for high resolution scanning transmission electron microscopy, R. Hovden, H. L. Xin, and D. A. Muller, Microsc. and Microanal., 17, 78 (2011) (link)

2010

1. A new spin on electron beams, H. L. Xin* and D. A. Muller, Nat. Nanotechnol., 5, 764 (2010) (link)

2. Block copolymer self-assembly directed single crystal homoepitaxial and heteroepitaxial nanostructures, H. Arora, et al, Science 330, 214 (2010) (link)

3. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for oxygen reduction reaction, D. Wang and H. L. Xin et al, J. Am. Chem. Soc. 132, 17664 (2010) (link)

4. Three-dimensional imaging in aberration-corrected electron microscopes, H. L. Xin* and D. A. Muller, Microsc. and Microanal. 16, 445 (2010) (link)

5. Three-dimensional imaging of pore structures inside low-κ dielectrics, H. L. Xin*, P. Ercius, et al,Appl. Phys. Lett. 96, 223108 (2010) (link)

6. Atomic-resolution spectroscopic imaging of oxide interfaces, L. Fitting Kourkoutis, H. L. Xin, et al,Phil. Mag. 90, 4731 (2010) (link)

2009

1. Visualizing the 3-D internal structure of calcite single crystals grown in agarose hydrogels, H. Li (1), H. L. Xin (1), D. A. Muller, L. Estroff, Science 326, 1244 (2009) (link)

2 Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM,H. L. Xin* and D. A. Muller, J. Electron Microsc. 58, 157 (2009) (link)

3. Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films, C. Adamo, et al, Appl. Phys. Lett. 95, 112504 (2009) (link)

2008

1. Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy, H. L. Xin, V. Intaraprasonk and D. A. Muller, Appl. Phys. Lett. 92, 013125 (2008) (link)

2. Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes, V. Intaraprasonk, H. L. Xin and D. A. Muller, Ultramicroscopy 108, 1454 (2008) (link)